

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

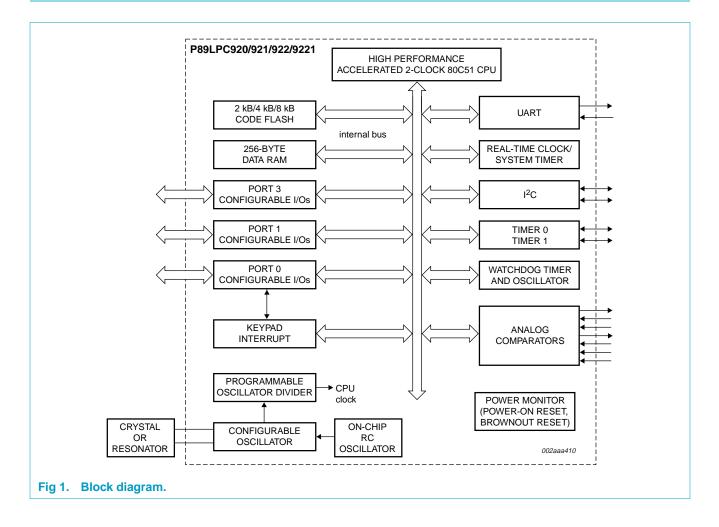
Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc9221fdh-518

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Ordering information


Table 1: Orderin	g informatio	n	
Type number	Package		
	Name	Description	Version
P89LPC920FDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
P89LPC921FDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
P89LPC922FDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
P89LPC922FN	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
P89LPC9221FN	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
P89LPC9221FDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1

3.1 Ordering options

Table 2: Part options			
Type number	Flash memory	Temperature range	Frequency
P89LPC920FDH	2 kB	–40 °C to +85 °C	0 MHz to 18 MHz
P89LPC921FDH	4 kB	–40 °C to +85 °C	0 MHz to 18 MHz
P89LPC922FDH	8 kB	–40 °C to +85 °C	0 MHz to 18 MHz
P89LPC922FN	8 kB	–40 °C to +85 °C	0 MHz to 18 MHz
P89LPC9221FN	8 kB	–40 °C to +85 °C	0 MHz to 18 MHz
P89LPC9221FDH	8 kB	–40 °C to +85 °C	0 MHz to 18 MHz

8-bit microcontrollers with two-clock 80C51 core

4. Block diagram

Table 4:Special function registers...continued* indicates SFRs that are bit addressable.

0 14469	Name	Description	SFR	Bit function	ons and ad	dresses						Reset	value
			addr.	MSB							LSB	Hex	Binary
	I2SCLL	Serial clock generator/S duty cycle register LOW										00	00000000
	I2STAT	I ² C status register	D9H	STA.4	STA.3	STA.2	STA.1	STA.0	0	0	0	F8	11111000
			Bit address	AF	AE	AD	AC	AB	AA	A9	A8		
	IEN0*	Interrupt enable 0	A8H	EA	EWDRT	EBO	ES/ESR	ET1	EX1	ET0	EX0	00[1]	00000000
			Bit address	EF	EE	ED	EC	EB	EA	E9	E8		
	IEN1*	Interrupt enable 1	E8H	-	EST	-	-	-	EC	EKBI	EI2C	00[1]	00x0000
			Bit address	BF	BE	BD	BC	BB	BA	B 9	B8		
	IP0*	Interrupt priority 0	B8H	-	PWDRT	PBO	PS/PSR	PT1	PX1	PT0	PX0	00[1]	x0000000
	IP0H	Interrupt priority 0 HIGH	B7H	-	PWDRT H	PBOH	PSH/ PSRH	PT1H	PX1H	PT0H	PX0H	00 ^[1]	x0000000
			Bit address	FF	FE	FD	FC	FB	FA	F9	F8		
	IP1*	Interrupt priority 1	F8H	-	PST	-	-	-	PC	PKBI	PI2C	00[1]	00x00000
	IP1H	Interrupt priority 1 HIGH	F7H	-	PSTH	-	-	-	PCH	PKBIH	PI2CH	00[1]	00x00000
	KBCON	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 ^[1]	xxxxxx00
	KBMASK	Keypad interrupt mask register	86H									00	00000000
	KBPATN	Keypad pattern register	93H									FF	11111111
			Bit address	87	86	85	84	83	82	81	80		
0	P0*	Port 0	80H	T1/KB7	CMP1 /KB6	CMPREF /KB5	CIN1A /KB4	CIN1B /KB3	CIN2A /KB2	CIN2B /KB1	CMP2 /KB0		[1]
oninkli			Bit address	97	96	95	94	93	92	91	90		
Koninklijke Philips Electronics N.V. 2004. All rights reserv	P1*	Port 1	90H	-	-	RST	INT1	ĪNT0/ SDA	T0/SCL	RXD	TXD		[1]
lectron			Bit address	B7	B6	B5	B 4	B 3	B2	B1	B0		
iics N.∿	P3*	Port 3	B0H	-	-	-	-	-	-	XTAL1	XTAL2		[1]
/. 2004.	P0M1	Port 0 output mode 1	84H	(P0M1.7)	(P0M1.6)	(P0M1.5)	(P0M1.4)	(P0M1.3)	(P0M1.2)	(P0M1.1)	(P0M1.0)	FF	11111111
. All rig	P0M2	Port 0 output mode 2	85H	(P0M2.7)	(P0M2.6)	(P0M2.5)	(P0M2.4)	(P0M2.3)	(P0M2.2)	(P0M2.1)	(P0M2.0)	00	00000000
hts reserv	P1M1	Port 1 output mode 1	91H	(P1M1.7)	(P1M1.6)	-	(P1M1.4)	(P1M1.3)	(P1M1.2)	(P1M1.1)	(P1M1.0)	D3 <mark>[1]</mark>	11x1xx11

9397 750 Product data

P89LPC920/921/922/9221

the minimum specified operating voltage. When using an oscillator frequency above 12 MHz, in some applications, an external brownout detect circuit may be required to hold the device in reset when V_{DD} falls below the minimum specified operating voltage.

8.2.6 Clock output

The P89LPC920/921/922/9221 supports a user-selectable clock output function on the XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if another clock source has been selected (on-chip RC oscillator, watchdog oscillator, external clock input on X1) and if the Real-Time clock is not using the crystal oscillator as its clock source. This allows external devices to synchronize to the P89LPC920/921/922/9221. This output is enabled by the ENCLK bit in the TRIM register. The frequency of this clock output is $1/_2$ that of the CCLK. If the clock output is not needed in Idle mode, it may be turned off prior to entering Idle, saving additional power.

8.3 On-chip RC oscillator option

The P89LPC920/921/922/9221 has a 6-bit TRIM register that can be used to tune the frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory pre-programmed value to adjust the oscillator frequency to 7.373 MHz, \pm 1% at room temperature. End-user applications can write to the Trim register to adjust the on-chip RC oscillator to other frequencies.

8.4 Watchdog oscillator option

The watchdog has a separate oscillator which has a frequency of 400 kHz. This oscillator can be used to save power when a high clock frequency is not needed.

8.5 External clock input option

In this configuration, the processor clock is derived from an external source driving the XTAL1/P3.1 pin. The rate may be from 0 Hz up to 12 MHz. The XTAL2/P3.0 pin may be used as a standard port pin or a clock output. When using an oscillator frequency above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit is required to hold the device in reset at power-up until V_{DD} has reached its specified level. When system power is removed V_{DD} will fall below the minimum specified operating voltage. When using an oscillator frequency above 12 MHz, in some applications, an external brownout detect circuit may be required to hold the device in reset when V_{DD} falls below the minimum specified operating voltage.

8.6 CPU Clock (CCLK) wake-up delay

The P89LPC920/921/922/9221 has an internal wake-up timer that delays the clock until it stabilizes depending to the clock source used. If the clock source is any of the three crystal selections (low, medium and high frequencies) the delay is 992 OSCCLK cycles plus 60 to 100 μ s. If the clock source is either the internal RC oscillator, watchdog oscillator, or external clock, the delay is 224 OSCCLK cycles plus 60 to 100 μ s.

8.7 CPU Clock (CCLK) modification: DIVM register

The OSCCLK frequency can be divided down up to 510 times by configuring a dividing register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can retain the ability to respond to events that would not exit Idle mode by executing its normal program at a lower rate. This can also allow bypassing the oscillator start-up time in cases where Power-down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution.

8.8 Low power select

The P89LPC920/921/922/9221 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to '1' to lower the power consumption further. On any reset, CLKLP is '0' allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower.

8.9 Memory organization

The various P89LPC920/921/922/9221 memory spaces are as follows:

• DATA

128 bytes of internal data memory space (00h:7Fh) accessed via direct or indirect addressing, using instruction other than MOVX and MOVC. All or part of the Stack may be in this area.

• IDATA

Indirect Data. 256 bytes of internal data memory space (00h:FFh) accessed via indirect addressing using instructions other than MOVX and MOVC. All or part of the Stack may be in this area. This area includes the DATA area and the 128 bytes immediately above it.

SFR

Special Function Registers. Selected CPU registers and peripheral control and status registers, accessible only via direct addressing.

• CODE

64 kB of Code memory space, accessed as part of program execution and via the MOVC instruction. The P89LPC920/921/922/9221 has 2 kB/4 kB/8 kB of on-chip Code memory.

8.10 Data RAM arrangement

The 256 bytes of on-chip RAM are organized as shown in Table 5.

Table 5:	On-chip data memory usages	
Туре	Data RAM	Size (bytes)
DATA	Memory that can be addressed directly and indirectly	128
IDATA	Memory that can be addressed indirectly	256

8.11 Interrupts

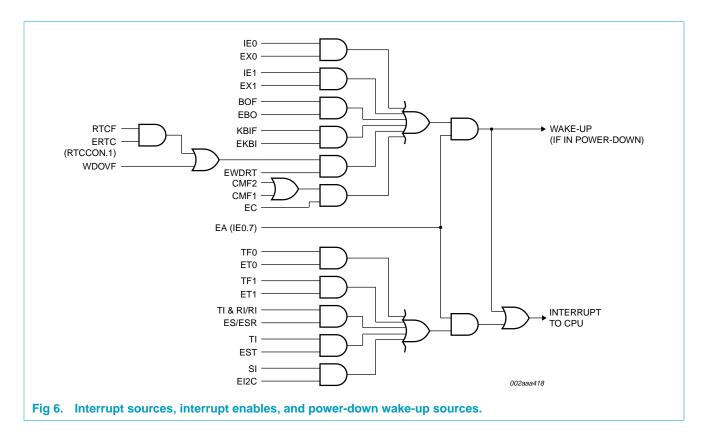
The P89LPC920/921/922/9221 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the many interrupt sources. The P89LPC920/921/922/9221 supports 12 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port Tx, serial port Rx, combined serial port Rx/Tx, brownout detect, watchdog/real-time clock, I²C, keyboard, and comparators 1 and 2.

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global disable bit, EA, which disables all interrupts.

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the interrupt priority registers IPO, IPOH, IP1, and IP1H. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority levels are pending at the start of an instruction, the request of higher priority level is serviced.

If requests of the same priority level are pending at the start of an instruction, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve pending requests of the same priority level.

8.11.1 **External interrupt inputs**


The P89LPC920/921/922/9221 has two external interrupt inputs as well as the Keypad Interrupt function. The two interrupt inputs are identical to those present on the standard 80C51 microcontrollers.

These external interrupts can be programmed to be level-triggered or edge-triggered by setting or clearing bit IT1 or IT0 in Register TCON.

In edge-triggered mode if successive samples of the INTn pin show a HIGH in one cycle and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an interrupt request.

If an external interrupt is enabled when the P89LPC920/921/922/9221 is put into Power-down or Idle mode, the interrupt will cause the processor to wake-up and resume operation. Refer to Section 8.14 "Power reduction modes" for details.

8-bit microcontrollers with two-clock 80C51 core

8.12 I/O ports

The P89LPC920/921/922/9221 has three I/O ports: Port 0, Port 1, and Port 3. Ports 0 and 1 are 8-bit ports, and Port 3 is a 2-bit port. The exact number of I/O pins available depend upon the clock and reset options chosen, as shown in Table 6.

Table 6: Number of I/O pins available

Clock source	Reset option	Number of I/O pins (20-pin package)
On-chip oscillator or	No external reset (except during power-up)	18
watchdog oscillator	External RST pin supported ^[1]	17
External clock input	No external reset (except during power-up)	17
	External RST pin supported ^[1]	16
Low/medium/high	No external reset (except during power-up)	16
speed oscillator (external crystal or resonator)	External RST pin supported ^[1]	15

[1] Required for operation above 12 MHz.

8.12.1 Port configurations

All but three I/O port pins on the P89LPC920/921/922/9221 may be configured by software to one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51 port outputs), push-pull, open drain, and input-only. Two configuration registers for each port select the output type for each port pin.

P1.5 (\overline{RST}) can only be an input and cannot be configured.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

9397 750 14469

P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or open-drain.

8.12.2 Quasi-bidirectional output configuration

Quasi-bidirectional output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is weakly driven, allowing an external device to pull the pin LOW. When the pin is driven LOW, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open-drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

The P89LPC920/921/922/9221 is a 3 V device, but the pins are 5 V-tolerant. In quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing from the pin to V_{DD} , causing extra power consumption. Therefore, applying 5 V in quasi-bidirectional mode is discouraged.

A quasi-bidirectional port pin has a Schmitt-triggered input that also has a glitch suppression circuit.

8.12.3 Open-drain output configuration

The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port driver when the port latch contains a logic '0'. To be used as a logic output, a port configured in this manner must have an external pull-up, typically a resistor tied to V_{DD} .

An open-drain port pin has a Schmitt-triggered input that also has a glitch suppression circuit.

8.12.4 Input-only configuration

The input-only port configuration has no output drivers. It is a Schmitt-triggered input that also has a glitch suppression circuit.

8.12.5 Push-pull output configuration

The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-bidirectional output modes, but provides a continuous strong pull-up when the port latch contains a logic '1'. The push-pull mode may be used when more source current is needed from a port output. A push-pull port pin has a Schmitt-triggered input that also has a glitch suppression circuit. The P89LPC9221 device has high source current on eight pins in push-pull mode. See Table 8 "DC electrical characteristics".

8.12.6 Port 0 analog functions

The P89LPC920/921/922/9221 incorporates two Analog Comparators. In order to give the best analog function performance and to minimize power consumption, pins that are being used for analog functions must have the digital outputs and digital inputs disabled.

Digital outputs are disabled by putting the port output into the Input-Only (high impedance) mode as described in Section 8.12.4.

Digital inputs on Port 0 may be disabled through the use of the PT0AD register, bits 1:5. On any reset, PT0AD1:5 defaults to '0's to enable digital functions.

8.14.1 Idle mode

Idle mode leaves peripherals running in order to allow them to activate the processor when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle mode.

8.14.2 Power-down mode

The Power-down mode stops the oscillator in order to minimize power consumption. The P89LPC920/921/922/9221 exits Power-down mode via any reset, or certain interrupts. In Power-down mode, the power supply voltage may be reduced to the RAM keep-alive voltage V_{RAM} . This retains the RAM contents at the point where Power-down mode was entered. SFR contents are not guaranteed after V_{DD} has been lowered to V_{RAM} , therefore it is highly recommended to wake up the processor via reset in this case. V_{DD} must be raised to within the operating range before the Power-down mode is exited.

Some chip functions continue to operate and draw power during Power-down mode, increasing the total power used during Power-down. These include: Brownout detect, Watchdog Timer, Comparators (note that Comparators can be powered-down separately), and Real-Time Clock (RTC)/System Timer. The internal RC oscillator is disabled unless both the RC oscillator has been selected as the system clock AND the RTC is enabled.

8.14.3 Total Power-down mode

This is the same as Power-down mode except that the brownout detection circuitry and the voltage comparators are also disabled to conserve additional power. The internal RC oscillator is disabled unless both the RC oscillator has been selected as the system clock **and** the RTC is enabled. If the internal RC oscillator is used to clock the RTC during Power-down, there will be high power consumption. Please use an external low frequency clock to achieve low power with the Real-Time Clock running during Power-down.

8.15 Reset

The P1.5/RST pin can function as either an active-LOW reset input or as a digital input, P1.5. The RPE (Reset Pin Enable) bit in UCFG1, when set to '1', enables the external reset input function on P1.5. When cleared, P1.5 may be used as an input pin.

Remark: During a power-up sequence, the RPE selection is overridden and this pin will always function as a reset input. **An external circuit connected to this pin should not hold this pin LOW during a power-on sequence as this will keep the device in reset.** After power-up this input will function either as an external reset input or as a digital input as defined by the RPE bit. Only a power-up reset will temporarily override the selection defined by RPE bit. Other sources of reset will not override the RPE bit.

Remark: During a power cycle, V_{DD} must fall below V_{POR} (see Table 8 "DC electrical characteristics" on page 36) before power is reapplied, in order to ensure a power-on reset.

Reset can be triggered from the following sources:

8-bit microcontrollers with two-clock 80C51 core

- External reset pin (during power-up or if user configured via UCFG1). This option must be used for an oscillator frequency above 12 MHz);
- Power-on detect;
- Brownout detect;
- Watchdog Timer;
- Software reset;
- UART break character detect reset.

For every reset source, there is a flag in the Reset Register, RSTSRC. The user can read this register to determine the most recent reset source. These flag bits can be cleared in software by writing a '0' to the corresponding bit. More than one flag bit may be set:

- During a power-on reset, both POF and BOF are set but the other flag bits are cleared.
- For any other reset, previously set flag bits that have not been cleared will remain set.

8.15.1 Reset vector

Following reset, the P89LPC920/921/922/9221 will fetch instructions from either address 0000h or the Boot address. The Boot address is formed by using the Boot Vector as the high byte of the address and the low byte of the address = 00h.

The Boot address will be used if a UART break reset occurs, or the non-volatile Boot Status bit (BOOTSTAT.0) = 1, or the device is forced into ISP mode during power-on (see *P89LPC920/921/922/9221 User's Manual*). Otherwise, instructions will be fetched from address 0000H.

8.16 Timers/counters 0 and 1

The P89LPC920/921/922/9221 has two general purpose counter/timers which are upward compatible with the standard 80C51 Timer 0 and Timer 1. Both can be configured to operate either as timers or event counter. An option to automatically toggle the T0 and/or T1 pins upon timer overflow has been added.

In the 'Timer' function, the register is incremented every machine cycle.

In the 'Counter' function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function, the external input is sampled once during every machine cycle.

Timer 0 and Timer 1 have five operating modes (modes 0, 1, 2, 3 and 6). Modes 0, 1, 2 and 6 are the same for both Timers/Counters. Mode 3 is different.

8.16.1 Mode 0

Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a 13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.

8.16.2 Mode 1

Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.

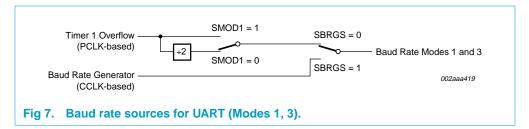
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

8.18.2 Mode 1

10 bits are transmitted (through TxD) or received (through RxD): a start bit (logical '0'), 8 data bits (LSB first), and a stop bit (logical '1'). When data is received, the stop bit is stored in RB8 in Special Function Register SCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section 8.18.5 "Baud rate generator and selection").

8.18.3 Mode 2

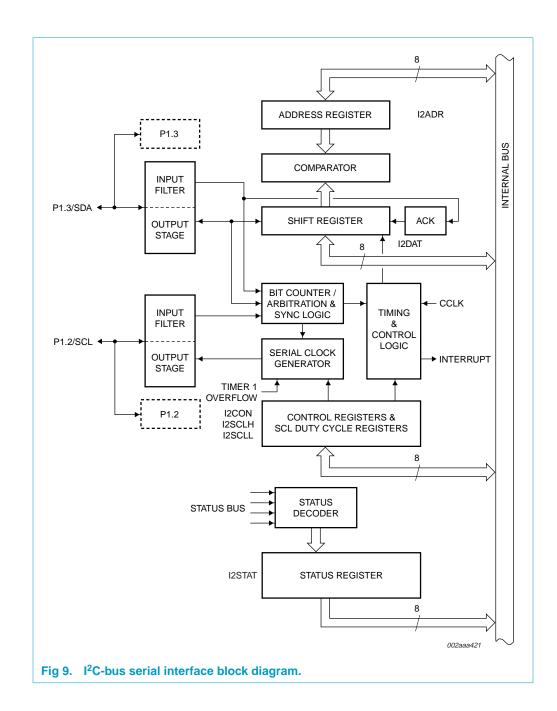
11 bits are transmitted (through TxD) or received (through RxD): start bit (logical '0'), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical '1'). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of '0' or '1'. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is received, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is not saved. The baud rate is programmable to either $\frac{1}{16}$ or $\frac{1}{32}$ of the CPU clock frequency, as determined by the SMOD1 bit in PCON.


8.18.4 Mode 3

11 bits are transmitted (through TxD) or received (through RxD): a start bit (logical '0'), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical '1'). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section 8.18.5 "Baud rate generator and selection").

8.18.5 Baud rate generator and selection

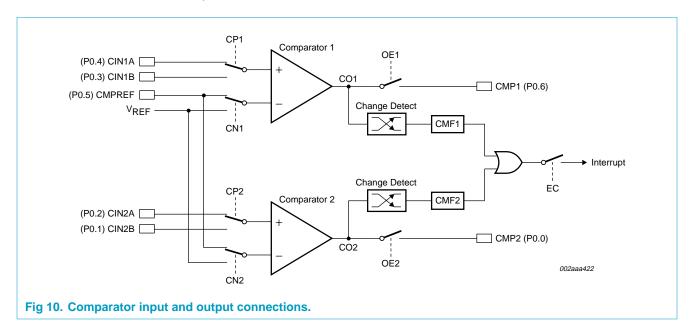
The P89LPC920/921/922/9221 enhanced UART has an independent Baud Rate Generator. The baud rate is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0 SFRs which together form a 16-bit baud rate divisor value that works in a similar manner as Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be used for other timing functions.


The UART can use either Timer 1 or the baud rate generator output (see Figure 7). Note that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is set. The independent Baud Rate Generator uses OSCCLK.

8.18.6 Framing error

Framing error is reported in the status register (SSTAT). In addition, if SMOD0 (PCON.6) is '1', framing errors can be made available in SCON.7 respectively. If SMOD0 is '0', SCON.7 is SM0. It is recommended that SM0 and SM1 (SCON.7:6) are set up when SMOD0 is '0'.

8-bit microcontrollers with two-clock 80C51 core


8.20 Analog comparators

Two analog comparators are provided on the P89LPC920/921/922/9221. Input and output options allow use of the comparators in a number of different configurations. Comparator operation is such that the output is a logical one (which may be read in a register and/or routed to a pin) when the positive input (one of two selectable pins) is greater than the negative input (selectable from a pin or an internal reference voltage). Otherwise the output is a zero. Each comparator may be configured to cause an interrupt when the output value changes.

The overall connections to both comparators are shown in Figure 10. The comparators function to V_{DD} = 2.4 V.

When each comparator is first enabled, the comparator output and interrupt flag are not guaranteed to be stable for 10 microseconds. The corresponding comparator interrupt should not be enabled during that time, and the comparator interrupt flag must be cleared before the interrupt is enabled in order to prevent an immediate interrupt service.

When a comparator is disabled the comparator's output, COx, goes HIGH. If the comparator output was LOW and then is disabled, the resulting transition of the comparator output from a LOW to HIGH state will set the comparator flag, CMFx. This will cause an interrupt if the comparator interrupt is enabled. The user should therefore disable the comparator interrupt prior to disabling the comparator. Additionally, the user should clear the comparator flag, CMFx, after disabling the comparator.

8.20.1 Internal reference voltage

An internal reference voltage generator may supply a default reference when a single comparator input pin is used. The value of the internal reference voltage, referred to as V_{REF} , is 1.23 V ±10%.

8.20.2 Comparator interrupt

Each comparator has an interrupt flag contained in its configuration register. This flag is set whenever the comparator output changes state. The flag may be polled by software or may be used to generate an interrupt. The two comparators use one common interrupt vector. If both comparators enable interrupts, after entering the interrupt service routine, the user needs to read the flags to determine which comparator caused the interrupt.

8.20.3 Comparators and power reduction modes

Either or both comparators may remain enabled when Power-down or Idle mode is activated, but both comparators are disabled automatically in Total Power-down mode. If a comparator interrupt is enabled (except in Total Power-down mode), a change of the comparator output state will generate an interrupt and wake up the processor. If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in Power-down mode. The reason is that with the oscillator stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place.

Comparators consume power in Power-down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue. To minimize power consumption, the user can disable the comparators via PCONA.5, or put the device in Total Power-down mode.

8.21 Keypad interrupt (KBI)

The Keypad Interrupt function is intended primarily to allow a single interrupt to be generated when Port 0 is equal to or not equal to a certain pattern. This function can be used for bus address recognition or keypad recognition. The user can configure the port via SFRs for different tasks.

The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag (KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is matched while the Keypad Interrupt function is active. An interrupt will be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to define equal or not-equal for the comparison.

In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key connected to Port 0 which is enabled by the KBMASK register will cause the hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to wake up the CPU from Idle or Power-down modes. This feature is particularly useful in handheld, battery-powered systems that need to carefully manage power consumption yet also need to be convenient to use.

In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer than 6 CCLKs.

8-bit microcontrollers with two-clock 80C51 core

Flash programming and erasing: There are three methods of erasing or programming of the Flash memory that may be used. First, the Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point. Second, the on-chip ISP boot loader may be invoked. This ISP boot loader will, in turn, call low-level routines through the same common entry point that can be used by the end-user application. Third, the Flash may be programmed or erased using the parallel method by using a commercially available EPROM programmer which supports this device. This device does not provide for direct verification of code memory contents. Instead this device provides a 32-bit CRC result on either a sector or the entire 2 kB/4 kB/8 kB of user code space.

Boot ROM: When the microcontroller programs its own Flash memory, all of the low-level details are handled by code that is contained in a Boot ROM that is separate from the Flash memory. A user program simply calls the common entry point in the Boot ROM with appropriate parameters to accomplish the desired operation. The Boot ROM include operations such as erase sector, erase page, program page, CRC, program security bit, etc. The Boot ROM occupies the program memory space at the top of the address space from FF00H to FEFFH, thereby not conflicting with the user program memory space.

Power-on reset code execution: The P89LPC920/921/922/9221 contains two special Flash elements: the Boot Vector and the Boot Status Bit. Following reset, the P89LPC920/921/922/9221 examines the contents of the Boot Status Bit. If the Boot Status Bit is set to zero, power-up execution starts at location 0000H, which is the normal start address of the user's application code. When the Boot Status Bit is set to a one, the contents of the Boot Vector is used as the high byte of the execution address and the low byte is set to 00H. The factory default setting is 1FH for the P89LPC9221 and P89LPC922, and corresponds to the address 1F00H for the default ISP boot loader. The factory default setting is 0FH for the P89LPC921 and corresponds to the address 0F00H for the default ISP boot loader. The factory default setting for the LPC920 is 07H and corresponds to the address 0700H. This boot loader is pre-programmed at the factory into this address space and can be erased by the user. Users who wish to use this loader should take precautions to avoid erasing the 1 kB sector from 1C00H to 1FFFH in the P89LPC922/9221 or the 1 kB sector from 0C00H to 0FFFH in the P89LPC921, or the 1 kB sector from 0400H to 07FFH in the P89LPC920. Instead, the page erase function can be used to erase the eight 64-byte pages which comprise the lower 512 bytes of the sector. A custom boot loader can be written with the Boot Vector set to the custom boot loader, if desired.

Hardware activation of the boot loader: The boot loader can also be executed by forcing the device into ISP mode during a power-on sequence (see the *P89LPC920/921/922/9221 User's Manual* for specific information). This has the same effect as having a non-zero Boot Status Bit. This allows an application to be built that will normally execute user code but can be manually forced into ISP operation. If the factory default setting for the Boot Vector is changed, it will no longer point to the factory pre-programmed ISP boot loader code. If this happens, the only way it is possible to change the contents of the Boot Vector is through the parallel programming method, provided that the end user application does not contain a customized loader that provides for erasing and reprogramming of the Boot Vector

and Boot Status Bit. After programming the Flash, the Boot Status Bit should be programmed to zero in order to allow execution of the user's application code beginning at address 0000H.

In-System Programming (ISP): In-System Programming is performed without removing the microcontroller from the system. The In-System Programming facility consists of a series of internal hardware resources coupled with internal firmware to facilitate remote programming of the P89LPC920/921/922/9221 through the serial port. This firmware is provided by Philips and embedded within each P89LPC920/921/922/9221 device. The Philips In-System Programming facility has made in-system programming in an embedded application possible with a minimum of additional expense in components and circuit board area. The ISP function uses five pins (V_{DD}, V_{SS}, TXD, RXD, and RST). Only a small connector needs to be available to interface your application to an external circuit in order to use this feature. Please see the *P89LPC920/921/922/9221 User's Manual* for additional details.

In-Application Programming (IAP): Several In-Application Programming (IAP) calls are available for use by an application program to permit selective erasing and programming of Flash sectors, pages, security bits, configuration bytes, and device identification. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at FF00H. Please see the *P89LPC920/921/922/9221 User's Manual* for additional details.

In-Circuit Programming (ICP): In-Circuit Programming is a method intended to allow commercial programmers to program and erase these devices without removing the microcontroller from the system. The In-Circuit Programming facility consists of a series of internal hardware resources to facilitate remote programming of the P89LPC920/921/922/9221 through a two-wire serial interface. Philips has made in-circuit programming in an embedded application possible with a minimum of additional expense in components and circuit board area. The ICP function uses five pins (V_{DD} , V_{SS} , P0.5, P0.4, and \overline{RST}). Only a small connector needs to be available to interface your application to an external programmer in order to use this feature.

8.25 User configuration bytes

A number of user-configurable features of the P89LPC920/921/922/9221 must be defined at power-up and therefore cannot be set by the program after start of execution. These features are configured through the use of the Flash byte UCFG1. Please see the *P89LPC920/921/922/9221 User's Manual* for additional details.

8.26 User sector security bytes

There are two/four/eight User Sector Security Bytes, each corresponding to one sector. Please see the *P89LPC920/921/922/9221 User's Manual* for additional details.

9. Limiting values

Table 7:Limiting values^[1]

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
T _{amb(bias)}	operating bias ambient temperature		-55	+125	°C
T _{stg}	storage temperature range		-65	+150	°C
V _{xtal}	voltage on XTAL1, XTAL2 pin to V_{SS}		-	V _{DD} + 0.5	V
V _n	voltage on any other pin to V_{SS}		-0.5	+5.5	V
I _{OH(I/O)}	HIGH-level output current per I/O pin, P89LPC9221	P0.3 to P0.7, P1.4, P1.6, P1.7	-	20	mA
		all other I/O pins	-	8	mA
	HIGH-level output current per I/O pin, P89LPC920/921/922		-	8	mA
I _{OL(I/O)}	LOW-level output current per I/O pin		-	20	mA
II/O(tot)(max)	maximum total I/O current, P89LPC9221		-	160	mA
	maximum total I/O current, P89LPC920/921/922		-	80	mA
P _{tot(pack)}	total power dissipation per package	based on package heat transfer, not device power consumption	-	1.5	W

[1] The following applies to Limiting values:

a) Stresses above those listed under Table 7 may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in Table 8 "DC electrical characteristics", Table 9 "AC characteristics" and Table 10 "AC characteristics" of this specification are not implied.

b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

11. Dynamic characteristics

Table 9:AC characteristics

 V_{DD} = 2.4 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \degree C$ to +85 $\degree C$ for industrial, unless otherwise specified.^[1]

Symbol	Parameter	Conditions	Variable	clock	f _{osc} = 12 MHz		Unit
			Min	Max	Min	Max	
f _{RCOSC}	internal RC oscillator frequency (nominal f = 7.3728 MHz)	trimmed to ±1% at T _{amb} = 25 °C	7.189	7.557	7.189	7.557	MHz
f _{WDOSC}	internal Watchdog oscillator frequency (nominal f = 400 kHz)		320	520	320	520	kHz
f _{osc}	oscillator frequency		0	12	-	-	MHz
t _{CLCL}	clock cycle	see Figure 13	83	-	-	-	ns
f _{CLKP}	CLKLP active frequency		0	8	-	-	MHz
Glitch filt	er						
	glitch rejection, P1.5/RST pin		-	50	-	50	ns
	signal acceptance, P1.5/RST pin		125	-	125	-	ns
	glitch rejection, any pin except P1.5/RST		-	15	-	15	ns
	signal acceptance, any pin except P1.5/RST		50	-	50	-	ns
External	clock						
t _{CHCX}	HIGH time	see Figure 13	33	$t_{CLCL} - t_{CLCX}$	33	-	ns
t _{CLCX}	LOW time	see Figure 13	33	t _{CLCL} – t _{CHCX}	33	-	ns
t _{CLCH}	rise time	see Figure 13	-	8	-	8	ns
t _{CHCL}	fall time	see Figure 13	-	8	-	8	ns
Shift regi	ster (UART mode 0)						
t _{XLXL}	serial port clock cycle time		16 t _{CLCL}	-	1333	-	ns
t _{QVXH}	output data set-up to clock rising edge		13 t _{CLCL}	-	1083	-	ns
t _{XHQX}	output data hold after clock rising edge		-	t _{CLCL} + 20	-	103	ns
t _{XHDX}	input data hold after clock rising edge		-	0	-	0	ns
t _{DVXH}	input data valid to clock rising edge		150	-	150	-	ns

[1] Parameters are valid over operating temperature range unless otherwise specified. Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

12. Comparator electrical characteristics

Table 12: Comparator electrical characteristics

 V_{DD} = 2.4 V to 3.6 V, unless otherwise specified.

 $T_{amb} = -40 \circ C$ to +85 $\circ C$ for industrial, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IO}	offset voltage comparator inputs		-	-	±20	mV
V _{CR}	common mode range comparator inputs		0	-	$V_{DD}-0.3$	V
CMRR	common mode rejection ratio		[1] _	-	-50	dB
	response time		-	250	500	ns
	comparator enable to output valid		-	-	10	μs
I _{IL}	input leakage current, comparator	$0 < V_{IN} < V_{DD}$	-	-	±10	μΑ

[1] This parameter is characterized, but not tested in production.

8-bit microcontrollers with two-clock 80C51 core

Contents

1	General description	. 1	8.1
2	Features	. 1	8.1
2.1	Principal features	. 1	8.1
2.2	Additional features		8.1
3	Ordering information	. 3	8.1
3.1	Ordering options		8.1
4	Block diagram		8.1
-	-		8.1
5	Pinning information		8.1 8.1
5.1	Pinning		o. 1 8.1
5.2	Pin description		8.1
6	Logic symbol		8.1
7	Special function registers	. 9	0.1
8	Functional description	14	8.1
8.1	Enhanced CPU	14	
8.2	Clocks	14	8.1
8.2.1	Clock definitions		8.2
8.2.2	CPU clock (OSCCLK)		8.2
8.2.3	Low speed oscillator option	14	8.2
8.2.4	Medium speed oscillator option	14	8.2
8.2.5	High speed oscillator option	14	8.2
8.2.6	Clock output	15	8.2
8.3	On-chip RC oscillator option		8.2
8.4	Watchdog oscillator option		8.2
8.5	External clock input option		8.2
8.6	CPU Clock (CCLK) wake-up delay		8.2
8.7	CPU Clock (CCLK) modification: DIVM register		8.2
8.8	Low power select	17	8.2
8.9	Memory organization		8.2
8.10	Data RAM arrangement		
8.11	Interrupts	18	8.2
8.11.1	External interrupt inputs		8.2
8.12	I/O ports		9
8.12.1	Port configurations	19	10
8.12.2	Quasi-bidirectional output configuration		11
8.12.3	Open-drain output configuration.		
8.12.4	Input-only configuration		12
8.12.5	Push-pull output configuration		13
8.12.6	Port 0 analog functions		14
8.12.7 8.13	Additional port features		15
8.13.1	Brownout detection		16
8.13.1	Power-on detection		17
8.14	Power reduction modes		
8.14.1	Idle mode	22	18
8.14.1	Power-down mode		
8.14.3	Total Power-down mode		
8.15	Reset		
8.15.1	Reset vector		
8.16	Timers/counters 0 and 1		
8.16.1	Mode 0		
8.16.2	Mode 1		
8.16.3	Mode 2		
8.16.4	Mode 3		
2		- ·	

© Koninklijke Philips Electronics N.V. 2004. Printed in the U.S.A.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 15 December 2004

8.16.5	Mode 6
8.16.6	Timer overflow toggle output
8.17	Real-Time clock/system timer
8.18	UART 24
8.18.1	Mode 0
8.18.2	Mode 1
8.18.3	Mode 2
8.18.4	Mode 3
8.18.5	Baud rate generator and selection
8.18.6	Framing error
8.18.7	Break detect
8.18.8	Double buffering
8.18.9	Transmit interrupts with double buffering
	enabled (Modes 1, 2 and 3)
8.18.10	The 9 th bit (bit 8) in double buffering (Modes 1, 2 and
	3)
8.19	I ² C-bus serial interface
8.20	Analog comparators
8.20.1	Internal reference voltage
8.20.2	Comparator interrupt
8.20.3	Comparators and power reduction modes
8.21	Keypad interrupt (KBI)
8.22	Watchdog timer
8.23	Additional features
8.23.1	Software reset
8.23.2	Dual data pointers
8.24 8.24.1	Flash program memory
8.24.1 8.24.2	General description
8.24.2 8.24.3	Features
0.24.3	the P89LPC920/921/922/9221
8.25	User configuration bytes
8.25 8.26	User sector security bytes
9	Limiting values 35
10	Static characteristics 36
11	Dynamic characteristics 38
12	Comparator electrical characteristics 41
13	Package outline
14	Revision history 44
15	Data sheet status
16	Definitions
17	Disclaimers 45
18	Licenses

Let's make things better.