

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15355-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 External Oscillator Pins

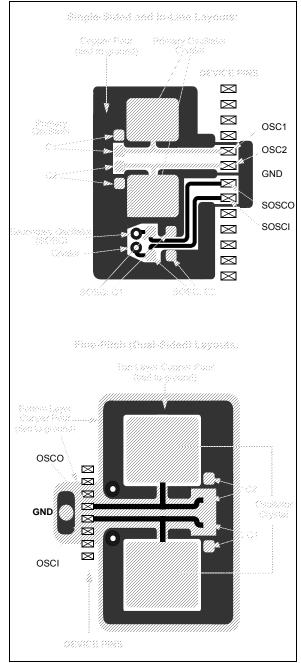
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

TABLE 4-5:PIC16(L)F15354/55 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Register		Core Register		Core Register		Core Register								
	(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)								
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	—	58Ch	NCO1ACCL	60Ch	CWG1CLK	68Ch	—	70Ch	PIR0	78Ch	
40Dh	_	48Dh	_	50Dh	_	58Dh	NCO1ACCH	60Dh	CWG1DAT	68Dh		70Dh	PIR1	78Dh	
40Eh	_	48Eh	_	50Eh	—	58Eh	NCO1ACCU	60Eh	CWG1DBR	68Eh	_	70Eh	PIR2	78Eh	
40Fh	_	48Fh	_	50Fh	—	58Fh	NCO1INCL	60Fh	CWG1DBF	68Fh	_	70Fh	PIR3	78Fh	
410h	—	490h	—	510h	—	590h	NCO1INCH	610h	CWG1CON0	690h	_	710h	PIR4	790h	_
411h	—	491h	_	511h	—	591h	NCO1INCU	611h	CWG1CON1	691h	_	711h	PIR5	791h	_
412h	—	492h	—	512h	—	592h	NCO1CON	612h	CWG1AS0	692h	—	712h	PIR6	792h	_
413h	—	493h	—	513h	—	593h	NCO1CLK	613h	CWG1AS1	693h	—	713h	PIR7	793h	—
414h	—	494h	—	514h	—	594h	—	614h	CWG1STR	694h	_	714h	_	794h	—
415h	—	495h	—	515h	—	595h	_	615h	—	695h	_	715h	—	795h	_
416h	—	496h	_	516h	—	596h	_	616h	—	696h	_	716h	PIE0	796h	PMD0
417h	—	497h	_	517h	—	597h	_	617h	—	697h	_	717h	PIE1	797h	PMD1
418h	_	498h	_	518h	_	598h	_	618h	_	698h	_	718h	PIE2	798h	PMD2
419h	_	499h	_	519h	_	599h	_	619h	_	699h	_	719h	PIE3	799h	PMD3
41Ah	—	49Ah	_	51Ah	—	59Ah		61Ah	—	69Ah	_	71Ah	PIE4	79Ah	PMD4
41Bh	_	49Bh	_	51Bh	_	59Bh	_	61Bh	_	69Bh		71Bh	PIE5	79Bh	PMD5
41Ch		49Ch	_	51Ch	_	59Ch	TMR0	61Ch	_	69Ch	_	71Ch	PIE6	79Ch	
41Dh		49Dh	_	51Dh	_	59Dh	PR0	61Dh	_	69Dh	_	71Dh	PIE7	79Dh	
41Eh		49Eh	_	51Eh	_	59Eh	TMR0CON0	61Eh	_	69Eh	_	71Eh	—	79Eh	
41Fh	—	49Fh	—	51Fh	—	59Fh	TMR0CON1	61Fh	—	69Fh	—	71Fh	—	79Fh	_
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	General														
	Purpose		Unimplemented		Unimplemented		Unimplemented								
	Register		Read as '0'		Read as '0'		Read as '0'								
	80 Bytes ⁽²⁾														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h	Common RAM	4F0h	Common RAM	570h	Common RAM	5F0h	Common RAM	670h	Common RAM	6F0h	Common RAM	770h	Common RAM	7F0h	Common RAM
	Accesses		Accesses		Accesses		Accesses								
47Fh	70h-7Fh	4FFh	70h-7Fh	57Fh	70h-7Fh	5FFh	70h-7Fh	67Fh	70h-7Fh	6FFh	70h-7Fh	77Fh	70h-7Fh	7FFh	70h-7Fh

Note 1: Unimplemented locations read as '0'.

2: Present only in PIC16(L)F15355.

5.3 Code Protection

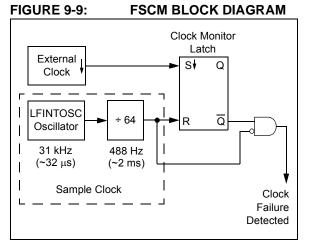
Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

5.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 5.4** "Write **Protection**" for more information.

5.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.


The WRTAPP, WRTSAF, WRTB, WRTC bits in Configuration Words (Register 5-4) define whether the corresponding region of the program memory block is protected or not.

5.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16(L)F153xx Memory Programming Specification" (DS40001838).

9.4 Fail-Safe Clock Monitor

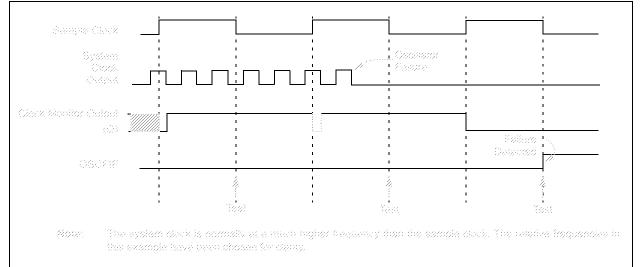
The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH and Secondary Oscillator).

9.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 9-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

FIGURE 9-10: FSCM TIMING DIAGRAM

9.4.2 FAIL-SAFE OPERATION


When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

9.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator, or external oscillator and PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

9.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. Therefore, the device will always be executing code while the OST is operating.

PIC16(L)F15354/55

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
	—	—	_	—	—	TMR2IE	TMR1IE	
bit 7							bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is	unchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are set			
bit 7-2	Unimplemer	ted: Read as ')'					
bit 1	TMR2IE: TM	R2 to PR2 Mate	h Interrupt Er	nable bit				
		the Timer2 to I						
		s the Timer2 to		-				
bit 0		er1 Overflow In	•					
		the Timer1 ove						
	0 = Enables	s the Timer1 ove	eniow interrup)(
Note:	Note: Bit PEIE of the INTCON register must be							
Note.	set to enable a	•						
	controlled by regis	• • •						

REGISTER 10-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	—	—	TMR1GIE
bit 7							bit C
Legend:							
R = Readable		W = Writable			mented bit, read		
u = Bit is unc	•	x = Bit is unkr		-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7 CLC4IE: CLC4 Interrupt Enable bit 1 = CLC4 interrupt enabled 0 = CLC4 interrupt disabled							
bit 6	1 = CLC3 ir	CLC3IE: CLC3 Interrupt Enable bit 1 = CLC3 interrupt enabled 0 = CLC3 interrupt disabled					
bit 5	1 = CLC2 ir	C2 Interrupt Ena nterrupt enableo nterrupt disableo	ł				
bit 4	1 = CLC1 ir	C1 Interrupt Ena nterrupt enableo nterrupt disableo	Ł				
bit 3-1	Unimplemer	nted: Read as '	0'				
bit 0 TMR1GIE: Timer1 Gate Interrupt Enable bit 1 = Enables the Timer1 gate acquisition interrupt 0 = Disables the Timer1 gate acquisition interrupt							
se	it PEIE of the IN et to enable a ontrolled by regis	ny peripheral	interrupt				

REGISTER 10-7: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

12.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 12-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0		
-	—			WDTPS<4:0>(1)			SWDTEN		
oit 7							bit		
Legend:									
R = Readab	le bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'			
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all ot	her Resets		
1' = Bit is se	et	'0' = Bit is clea	ired	q = Value depe	ends on conditi	on			
	Unimulana	nted. Deed ee 's	, 3						
oit 7-6	=	ented: Read as '0		ala at hita(1)					
oit 5-1		0>: Watchdog Tir	ner Prescale So	elect bits					
		Prescale Rate		ham val. (4,00)					
	11111 = R	eserved. Results	in minimum in	lervar (1:32)					
	•								
	•								
	10011 = R	eserved. Results	in minimum in	terval (1:32)					
	10010 = 1:8388608 (2 ²³) (Interval 256s nominal)								
	10001 = 1 :	:4194304 (2 ²²) (I	194304 (2 ²²) (Interval 128s nominal)						
	$10000 = 1:2097152 (2^{21})$ (Interval 64s nominal) $01111 = 1:1048576 (2^{20})$ (Interval 32s nominal)								
	01110 = 1:	:524288 (2 ¹⁹) (In :262144 (2 ¹⁸) (In	terval 16s nomi	nal)					
	01101 = 1	:262144 (2 ¹⁰) (In :131072 (2 ¹⁷) (In	terval 8s nomin	al)					
		:65536 (Interval 2							
		:32768 (Interval 1							
		:16384 (Interval 5	,	l)					
		:8192 (Interval 25							
		:4096 (Interval 12							
		:2048 (Interval 64							
		:1024 (Interval 32	,						
		:512 (Interval 16 :256 (Interval 8 m	,						
		:128 (Interval 4 m							
		:64 (Interval 2 ms							
		:32 (Interval 1 ms							
pit 0		Software Enable/I	Disable for Wat	chdog Timer bi	t				
	If WDTE<1:								
	This bit is ig								
	<u>If WDTE<1:</u> 1 = WDT is								
	1 = WDT is 0 = WDT is								
	If WDTE<1:								
	<u></u>								

- 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
- 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

19.2.1 CALIBRATION

Single-Point Calibration

Single-point calibration is performed by application software using Equation 19-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

The magnitude of error in a typical single-point calibration is approximately 3-4°C.

- Note 1: The TOFFSET value may be determined by the user with a temperature test, or it can be based on the Microchip-supplied data from the DIA table. Please refer to Section 6.0 "Device Information Area" for more information.
 - 2: Although the measurement range is -40°C to +125 °C, due to the variations in the value of Mv, the single-point calculated TSENSE value may indicate a temperature from -140°C to +225°C, before the calibration offset is applied.

Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or threepoint calibration is recommended.

19.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 19-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note:	Refer	to	Sec	tion 3	37.0	"Electrical
	Specifi	icatio	ons"	for	FVR	reference
	voltage	accu	iracy.			

EQUATION 19-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^N} \times Mt$$

$$Ma = \frac{\frac{V_{REF}}{2^{N}}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts)

N = Resolution of the ADC

EXAMPLE 19-1: TEMPERATURE RESOLUTION

Using VREF = 2.048V and a 10-bit ADC provides 2 mV/LSb measurements.

Because Mv can vary from -2.40 to -2.65 mV/°C, the range of Ma = 0.75 to 0.83 °C/LSb.

19.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a fixed amount of time for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed. This specification is provided in **Section 37.0 "Electrical Specifications"**.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—			ADAC1	「<3:0>		
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 20-3: ADACT: A/D AUTO-CONVERSION TRIGGER

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADACT<3:0>: Auto-Conversion Trigger Selection bits⁽¹⁾ (see Table 20-2)

Note 1: This is a rising edge sensitive input for all sources.

PIC16(L)F15354/55

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE		—	—	—		INTEDG	119	
PIE1	OSFIE	CSWIE					_	ADIE	121	
PIR1	OSFIF	CSWIF	-	_	_	_	-	ADIF	129	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	173	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	178	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	183	
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	174	
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	179	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	184	
ADCON0			CHS<	5:0>			GO/DONE	ADON	229	
ADCON1	ADFM	ŀ	ADCS<2:0>	>			ADPREF	<1:0>	230	
ADACT	—	—	—	_		ADA	CT<3:0>		231	
ADRESH				ADRE	SH<7:0>				232	
ADRESL	ADRESL<7:0>									
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	TSRNG CDAFVR<1:0> ADFVR<1:0>					
DAC1CON1	—	—	—			DAC1R<4	:0>	-	238	
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR	110	

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

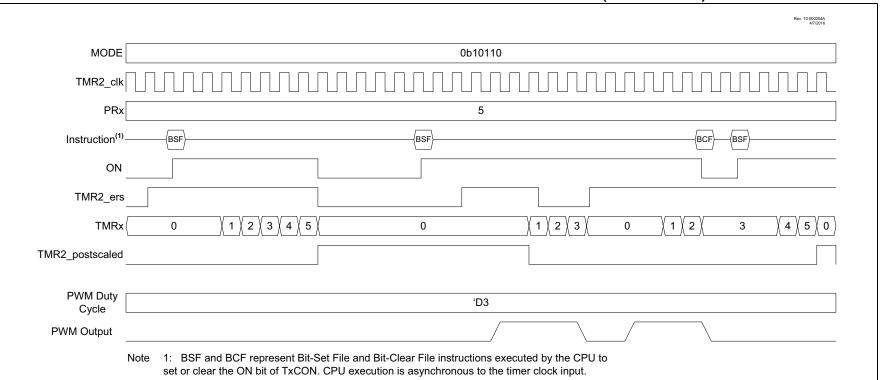
Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: Unimplemented, read as '1'.

21.4 Operation During Sleep

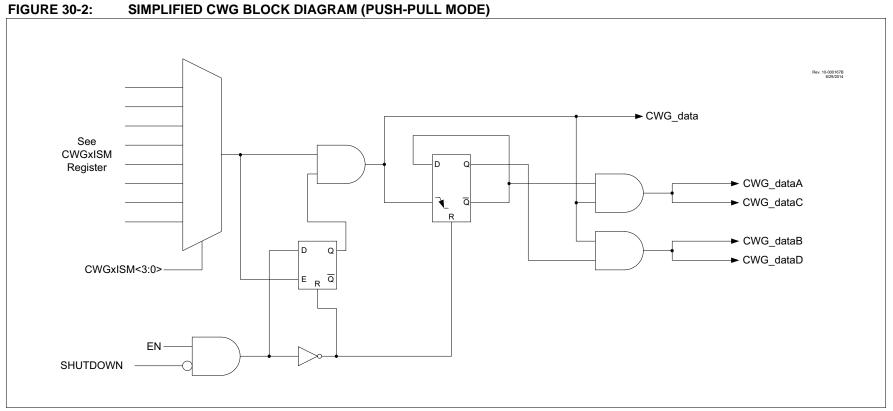
The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset


A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

23.12 Register Definitions: Comparator Control


REGISTER 23-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
ON	OUT	_	POL		—	HYS	SYNC			
bit 7	·						bit (
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets			
1' = Bit is se	t	'0' = Bit is cle	ared							
bit 7	•	ator Enable bit								
		tor is enabled	and consumes	no active pow	er					
bit 6	 0 = Comparator is disabled and consumes no active power OUT: Comparator Output bit 									
	If CxPOL = 1 (inverted polarity):									
	1 = CxVP < 0									
	0 = CxVP > 0	CxVN (noninverted p	olarity):							
	1 = CxVP > 0		olanty).							
	0 = CxVP <	CxVN								
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	POL: Compa	rator Output P	olarity Select b	it						
		tor output is in								
bit 3-2	•	tor output is no								
bit 1	-	ited: Read as '								
	-	rator Hysteres								
		 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 								
bit 0	SYNC: Comp	barator Output	Synchronous N	Mode bit						
	•	•	•) pin is synchro	onous to chang	ges on Timer1	clock source			
				Timer1 clock so						
	0 = Compara	ator output to T	imer1 and I/O	pin is asynchro	nous					

FIGURE 27-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

PIC16(L)F15354/55

SIMPLIFIED CWG BLOCK DIAGRAM (PUSH-PULL MODE)

PIC16(L)F15354/55

31.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 31-3 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

CLCxGLSy	LCxGyPOL	Gate Logic
0x55	1	4-input AND
0x55	0	4-input NAND
0xAA	1	4-input NOR
0xAA	0	4-input OR
0x00	0	Logic 0
0x00	1	Logic 1

TABLE 31-3: DATA GATING LOGIC

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

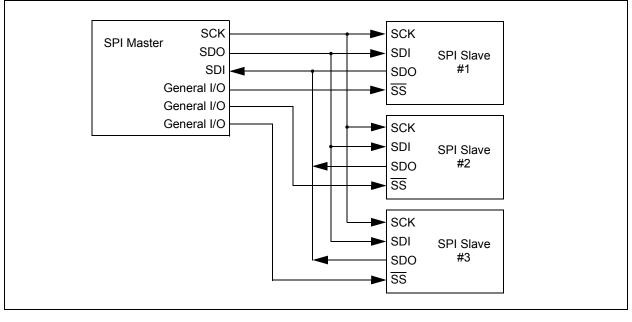
- Gate 1: CLCxGLS0 (Register 31-7)
- Gate 2: CLCxGLS1 (Register 31-8)
- Gate 3: CLCxGLS2 (Register 31-9)
- Gate 4: CLCxGLS3 (Register 31-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 31-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

31.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset


Logic functions are shown in Figure 31-2. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

31.1.4 OUTPUT POLARITY

The last stage in the Configurable Logic Cell is the output polarity. Setting the LCxPOL bit of the CLCxPOL register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

PIC16(L)F15354/55

FIGURE 32-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

32.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 32.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

32.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 32.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

32.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

32.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 32-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - **Note 1:** If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

33.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.

Table 33-1 contains the formulas for determining the baud rate. Example 33-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 33-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 33-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPxBRGH:SPxBRGL:

$X = \frac{Fosc}{\frac{Desired Baud Rate}{64} - 1}$
$= \frac{\frac{16000000}{9600}}{64} - 1$
= [25.042] = 25
$Calculated Baud Rate = \frac{16000000}{64(25+1)}$
= 9615
Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$
$=\frac{(9615-9600)}{9600} = 0.16\%$

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility