

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15354-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLES

Preliminary

TABLE 3:

28-Pin PDIP/SOIC/SSOP 28-Pin UQFN Reference Comparator I/O⁽²⁾ ADC C1IN0-2 RA0 27 ANA0 _ C2IN0-C1IN1-RA1 3 28 ANA1 _ _ C2IN1-C1IN0+ RA2 4 1 ANA2 DAC10UT1 _ _ C2IN0+ RA3 5 2 ANA3 VREF+ C1IN1+ _ DAC1REF+ RA4 6 3 ANA4 _ RA5 7 4 ANA5 _ _ _ RA6 10 7 ANA6 _ _ _ RA7 9 6 ANA7 — _ _ RB0 21 18 ANB0 C2IN1+ _ _ C1IN3-RB1 22 19 ANB1 _ _ C2IN3-RB2 23 20 ANB2 _ _ _

ANB3

ANB4

ADACT⁽¹⁾

ANB5

ANB6

ANB7

C1IN2-

C2IN2-

_

_

_

_

_

_

_

—

_

_

_

_

—

_

RB3

RB4

RB5

RB6

RB7

21

22

23

24

25

24

25

26

27

28

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note

28-PIN ALLOCATION TABLE (PIC16(L)F15354, PIC16(L)F15355)

NC0

Timers

_

_

_

TOCKI

_

_

_

_

_

_

_

_

T1G⁽¹⁾

_

_

PWM

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

CCP

_

_

_

_

_

_

_

_

_

_

_

_

—

CWG

_

_

_

_

_

_

CWG1IN⁽¹⁾

_

_

_

_

_

_

DAC

_

_

_

_

_

_

_

_

_

_

—

DAC10UT2

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C 4: specific or SMBus input buffer thresholds.

EUSART

_

_

_

_

_

_

_

_

_

_

_

_

TX2

CK2(1)

RX2

DT2⁽¹⁾

ZCD

_

_

_

_

_

_

ZCD1

_

_

—

MSSP

_

_

_

SS1(1)

_

_

SS2(1)

SCK2.

SCL2(1,4)

SDA2,

SDI2(1,4)

_

_

_

_

Interrupt

IOCA0

IOCA1

IOCA2

IOCA3

IOCA4

IOCA5

IOCA6

IOCA7

INT⁽¹⁾

IOCB0

IOCB1

IOCB2

IOCB3

IOCB4

IOCB5

IOCB6

IOCB7

CLKR

_

_

—

_

_

_

—

_

_

_

_

_

_

_

—

_

CLC

CLCIN0⁽¹⁾

CLCIN1⁽¹⁾

_

_

_

_

_

_

_

_

_

_

_

_

CLCIN2⁽¹⁾

CLCIN3⁽¹⁾

Pull-up

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Basic

_

_

_

_ CLKOUT

OSC2 CLKIN

OSC1

_

_

_

_

ICSPCLK

ICSPDAT

D
6
535
ω
ا کر
5 J
S J

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR												
Bank 13	Bank 13												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
68Ch 69Fh	— Unimplemented —									_			
Legend:													

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
1E0Ch	_				Unimple	mented					
1E0Dh	_				Unimple	mented					
1E0Eh	_				Unimple	mented					
1E0Fh	CLCDATA	_	_		_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu
1E10h	CLCCON	LC1EN	—	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0)>	0-00 0000	0-00 0000
1E11h	CLC1POL	LC1POL	_	_	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	_	_	LC1D1S<5:0>						xx xxxx	uu uuuu
1E13h	CLC1SEL1	_	—		LC1D2S<5:0>						uu uuu
1E14h	CLC1SEL2	_	—			LC1	03S<5:0>			xx xxxx	uu uuu
1E15h	CLC1SEL3	_	—	LC1D4S<5:0>						xx xxxx	uu uuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuu
1E1Ah	CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0)>	0-00 0000	0-00 000
1E1Bh	CLC2POL	LC2POL	_	_	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuu
1E1Ch	CLC2SEL0	_	_			LC2	01S<5:0>			xx xxxx	uu uuu
1E1Dh	CLC2SEL1	_	—			LC2)2S<5:0>			xx xxxx	uu uuu
1E1Eh	CLC2SEL2	_				LC2	03S<5:0>			xx xxxx	uu uuu
1E1Fh	CLC2SEL3	_	_			LC2	04S<5:0>			xx xxxx	uu uuu
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuu
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	นนนน นนนเ
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuu
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuu
1E24h	CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 000
1E25h	CLC3POL	LC3POL	—	-	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuu
1E26h	CLC3SEL0	_	_		•	LC3E	01S<5:0>			xx xxxx	uu uuuu
1E27h	CLC3SEL1	_	—			LC3E)2S<5:0>			xx xxxx	uu uuu
1E28h	CLC3SEL2	_	_			LC3	03S<5:0>			xx xxxx	uu uuuu
1E29h	CLC3SEL3	_	_			LC3	04S<5:0>			xx xxxx	uu uuu
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	XXXX XXXX	uuuu uuu

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	r specifics				
1F0Ch	_				Unimple	mented					
1F0Dh	_				Unimple	mented					
1F0Eh	_				Unimple	mented					
1F0Fh	_				Unimple	mented					
1F10h	RA0PPS	—	—	—			RA0PPS<4:0	>		00 0000	uu uuuu
1F11h	RA1PPS	—	—	—			RA1PPS<4:0	>		00 0000	uu uuuu
1F12h	RA2PPS	—	_	—			RA2PPS<4:0	>		00 0000	uu uuuu
1F13h	RA3PPS	—	_	—			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	-	-	—				00 0000	uu uuuu		
1F15h	RA5PPS	—	_	_		RA5PPS<4:0>					uu uuuu
1F16h	RA6PPS	—	_	_		RA6PPS<4:0>					uu uuuu
1F17h	RA7PPS	_	_	_	RA7PPS<4:0>					00 0000	uu uuuu
1F18h	RB0PPS	_	_	_	RB0PPS<4:0>					00 0000	uu uuuu
1F19h	RB1PPS	_	_	_	RB1PPS<4:0>					00 0000	uu uuuu
1F1Ah	RB2PPS	_	_	_		RB2PPS<4:0>					uu uuuu
1F1Bh	RB3PPS	_	_	_			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	_	_	_			RB4PPS<4:0	>		00 0000	uu uuuu
1F1Dh	RB5PPS	_	_	_			RB5PPS<4:0	>		00 0000	uu uuuu
1F1Eh	RB6PPS	_	_	_			RB6PPS<4:0	>		00 0000	uu uuuu
1F1Fh	RB7PPS	_	_	_			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	_	_	_			RC0PPS<4:0	>		00 0000	uu uuuu
1F21h	RC1PPS	_	_	_			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	—	_	—			RC2PPS<4:0	>		00 0000	uu uuuu
1F23h	RC3PPS	—	_	—			RC3PPS<4:0	>		00 0000	uu uuuu
1F24h	RC4PPS	—	_	—			RC4PPS<4:0	>		00 0000	uu uuuu
1F25h	RC5PPS	—	_	—			RC5PPS<4:0	>		00 0000	uu uuuu
1F26h	RC6PPS	—	_	—			RC6PPS<4:0	>		00 0000	uu uuuu
1F27h	RC7PPS	—	_	—			RC7PPS<4:0	>		00 0000	uu uuuu
1F28h 	_	Unimplemented								-	_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15354/55

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0		
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	1 = EXTOS	ternal Oscillato C is explicitly e C could be ena	nabled, operat	ing as specifie	(1) d by FEXTOSC	;			
bit 6	 HFOEN: HFINTOSC Oscillator Manual Request Enable bit 1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ 0 = HFINTOSC could be enabled by another module 								
bit 5	1 = MFINTOS	NTOSC Oscilla SC is explicitly of SC could be en	enabled		bit				
bit 4	1 = LFINTO	 0 = MFINTOSC could be enabled by another module LFOEN: LFINTOSC (31 kHz) Oscillator Manual Request Enable bit 1 = LFINTOSC is explicitly enabled 0 = LFINTOSC could be enabled by another module 							
bit 3	1 = Seconda	 SOSCEN: Secondary (Timer1) Oscillator Manual Request bit 1 = Secondary oscillator is explicitly enabled, operating as specified by SOSCPWR 0 = Secondary oscillator could be enabled by another module 							
bit 2	ADOEN: FRC Oscillator Manual Request Enable bit 1 = FRC is explicitly enabled 0 = FRC could be enabled by another module								
bit 1-0	Unimplemen	tad. Dood os '	o'						

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

FIGURE 10-2:	INTERRUPT LA	TENCY								
						Rev. 10-030269E 8/31/2016				
	3 Q4 Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4			Q1 Q2 Q3 Q4				
INT pin Valid Interrupt window ⁽¹⁾ 1 Cycle Instruction at PC										
Fetch PC -	1 PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006				
Execute PC -	21 PC - 1	РС	NOP	NOP	PC = 0x0004	PC = 0x0005				
Indeterminate Latency Latency										
	upt may occur at any t interrupt may occur a			ow, the actual lat	ency can vary.					

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4
OSC1					
	(4)				
INT pin		, (1)	1 1	1	<u> </u>
INTF	, (1) (5)		Interrupt Latency (2)	- - - - - - -	
GIE				· · · · · · · · · · · · · · · · · · ·	
INSTRUCTION	 I FLOW			<u>-</u>	
PC	C PC	PC + 1	PC + 1	0004h	X0005h
Instruction (Fetched	Inst (PC)	Inst (PC + 1)	-	Inst (0004h)	Inst (0005h)
Instruction (Executed	Inst (PC – 1)	Inst (PC)	Forced NOP	Forced NOP	Inst (0004h)
Note 1: IN	NTF flag is sampled here	e (every Q1).			
	synchronous interrupt la atency is the same whe				instruction cycle time.
3: F	or minimum width of IN	pulse, refer to AC sp	ecifications in Section	n 37.0 "Electrical Spe	ecifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

U-0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
_	NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	nted bit, read a	s '0'	
S = Bit can or	nly be set	x = Bit is unkno	own	-n/n = Value at I	POR and BOR/	Value at all other F	Resets
'1' = Bit is set		'0' = Bit is clea	red	HC = Bit is clear	red by hardware	e	
bit 7	Unimplement	ed: Read as '0'					
bit 6		-		and Device ID Rec	gisters		
bit 5	When FREE = 1 = The next	WR command u WR command w	odates the write		l within the row	; no memory opera	ation is initiated
bit 4	When NVMRE 1 = Performs address is	rase Enable bit <u>GS:NVMADR po</u> an erase operat s erased (to all 1 operations have	ion with the nex s) to prepare for	t WR command; f writing.	he 32-word pse	eudo-row containii	ng the indicate
bit 3	This bit is norm 1 = A write op NVMADR	ram/Erase Error nally set by hardy peration was inte points to a write ram or erase ope	ware. errupted by a Re e-protected addr	ess.	nlock sequence	e, or WR was writt	en to one whi
bit 2	1 = Allows pro	am/Erase Enable ogram/erase cyc ogramming/eras	les	-lash			
bit 1	WR: Write Cor <u>When NVMRE</u> 1 = Initiates th		n <u>ts to a PFM loc</u> cated by Table 1	<u>ation</u> : 3-4			
bit 0	RD: Read Con 1 = Initiates a bit is clea	trol bit ⁽⁷⁾ read at address	= NVMADR1, a eration is compl	nd loads data to N ete. The bit can o		akes one instructio cleared) in softwar	
2: B 3: B 4: T	it is undefined while it must be cleared I it may be written to his bit can only be	e WR = 1. by software; harc o '1' by software i	lware will not cle n order to imple he unlock seque	ear this bit. ment test sequen ence of Section 1	3.3.2 "NVM Ur	nlock Sequence".	

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

5: Operations are self-timed, and the WR bit is cleared by hardware when complete.6: Once a write operation is initiated, setting this bit to zero will have no effect.

14.5 Register Definitions: PORTB

REGISTER 14-9: PORTB: PORTB REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RB<7:0>**: PORTB I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. The actual I/O pin values are read from the PORTB register.

REGISTER 14-10: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

- 1 = PORTB pin configured as an input (tri-stated)
- 0 = PORTB pin configured as an output

19.2.1 CALIBRATION

Single-Point Calibration

Single-point calibration is performed by application software using Equation 19-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

The magnitude of error in a typical single-point calibration is approximately 3-4°C.

- Note 1: The TOFFSET value may be determined by the user with a temperature test, or it can be based on the Microchip-supplied data from the DIA table. Please refer to Section 6.0 "Device Information Area" for more information.
 - 2: Although the measurement range is -40°C to +125 °C, due to the variations in the value of Mv, the single-point calculated TSENSE value may indicate a temperature from -140°C to +225°C, before the calibration offset is applied.

Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or threepoint calibration is recommended.

19.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 19-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note:	Refer	to	Sec	tion 3	37.0	"Electrical
	Specifi	ons"	for	FVR	reference	
	voltage	accu	iracy.			

EQUATION 19-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^N} \times Mt$$

$$Ma = \frac{\frac{V_{REF}}{2^{N}}}{Mv}$$

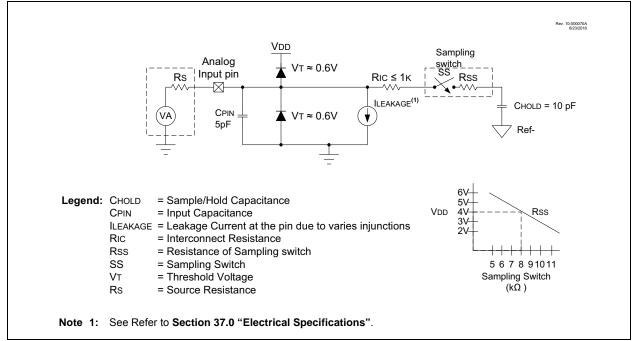
Where:

Mv = sensor voltage sensitivity (V/°C)

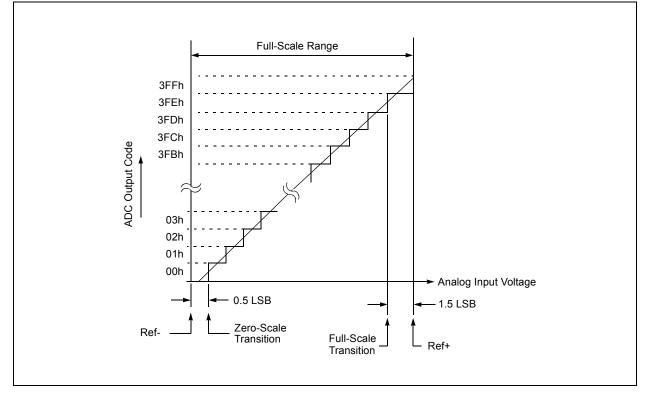
VREF = Reference voltage of the ADC module (in Volts)

N = Resolution of the ADC

EXAMPLE 19-1: TEMPERATURE RESOLUTION


Using VREF = 2.048V and a 10-bit ADC provides 2 mV/LSb measurements.

Because Mv can vary from -2.40 to -2.65 mV/°C, the range of Ma = 0.75 to 0.83 °C/LSb.


19.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a fixed amount of time for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed. This specification is provided in **Section 37.0 "Electrical Specifications"**.

FIGURE 20-4: ANALOG INPUT MODEL

FIGURE 20-5: ADC TRANSFER FUNCTION

22.1 NCO OPERATION

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 22-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency.

EQUATION 22-1: NCO OVERFLOW FREQUENCY

FOVERFLOW= <u>NCO Clock Frequency × Increment Value</u>

 2^{20}

22.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- HFINTOSC
- Fosc
- LC1_out
- LC2_out
- LC3_out
- LC4_out
- MFINTOSC (500 kHz)
- MFINTOSC (32 kHz)
- SOSC
- CLKR

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

22.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

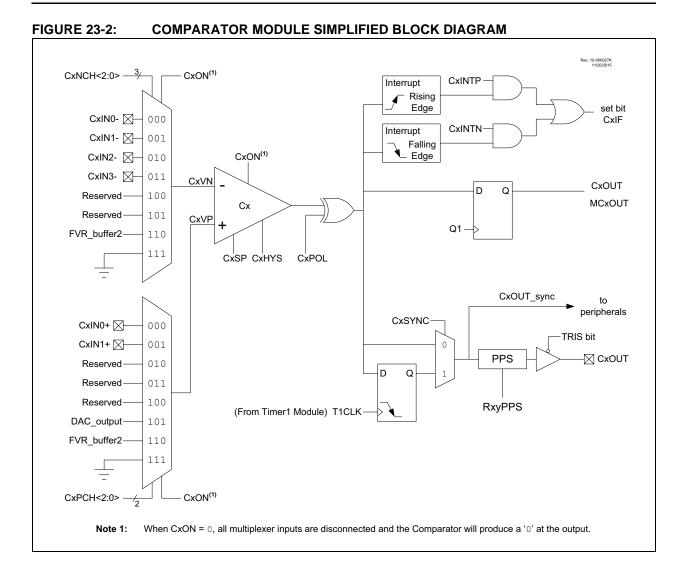
- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

22.1.3 ADDER

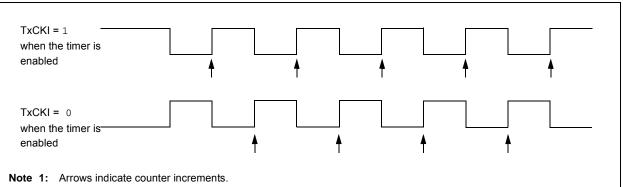
The NCO Adder is a full adder, which operates synchronously from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

22.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

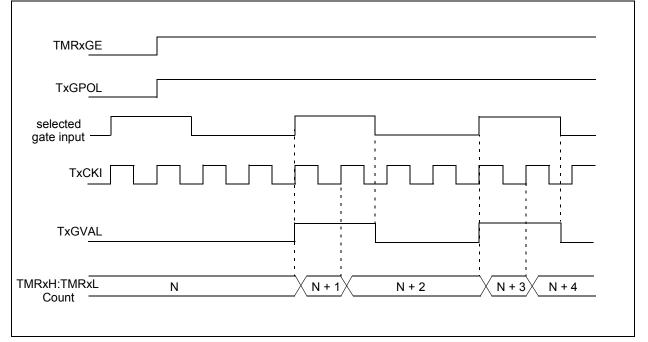

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO clk signal.


The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not useraccessible.



2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 26-3: TIMER1 GATE ENABLE MODE

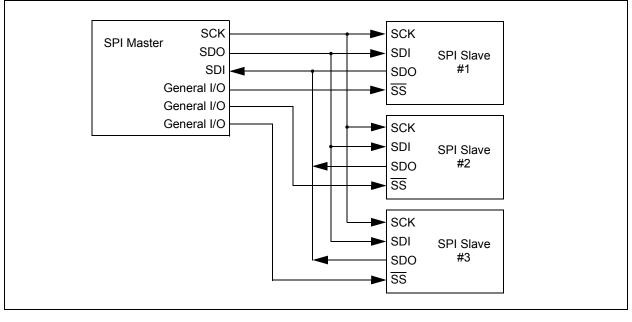
© 2016 Microchip Technology Inc.

27.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.


	Rev. 10.000 1998 \$500/2014	
MODE	0b00001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx($0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE			—	_	—	INTEDG	119		
PIR4	—	_	_	_	—	_	TMR2IF	TMR1IF	132		
PIE4	—	—	_	_	_	_	TMR2IE	TMR1IE	124		
CCP1CON	EN	—	OUT	FMT		MODE	=<3:0>		317		
CCP1CAP							CTS<2:0>		319		
CCPR1L	Capture/Compare/PWM Register 1 (LSB)										
CCPR1H	Capture/Con	Capture/Compare/PWM Register 1 (MSB)									
CCP2CON	EN	—	OUT FMT MODE<3:0>								
CCP2CAP	_	_	_	_	_		CTS<2:0>		319		
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LS	B)					319		
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					319		
CCPTMRS0	_	_	_	_	C2TSE	L<1:0>	C1TSE	L<1:0>	320		
CCPTMRS1	_	_	_	_	P2TSE	L<1:0>	C1TSE	L<1:0>	321		
CCP1PPS	_	_			CCP1PI	PS<5:0>			196		
CCP2PPS	_	_			CCP2PI	PS<5:0>			196		
RxyPPS	—	—	— RxyPPS<4:0>								
ADACT	—	—	_	— ADACT<3:0>					231		
CLCxSELy	_	—	_			LCxDyS<4:0>	>		363		
CWG1ISM	_	—	_	—		IS<	3:0>		352		

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

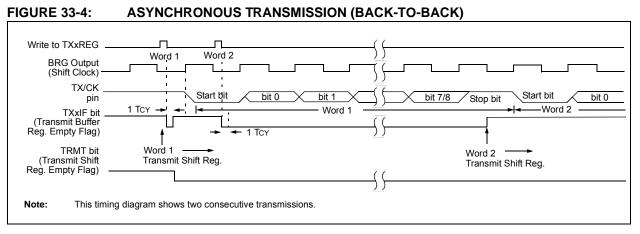
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

FIGURE 32-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

32.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)


SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 32.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

33.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.

TABLE 33-3: BAUD RATE FORMULAS

C	Configuration Bi	ts		Baud Rate Formula			
SYNC	SYNC BRG16 BRGH		BRG/EUSART Mode	Daug Rate Formula			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]			
0	0	1	8-bit/Asynchronous				
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]			
0	1	1	16-bit/Asynchronous				
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]			
1	1	х	16-bit/Synchronous				

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_	_	_	_	_	_	_	_	_	_	
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_	—	—	_	—	_		—		_	—	

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	—	_	_	—	_	_	19.20k	0.00	2	—	_	_
57.6k	—	_	—	—	—	—	57.60k	0.00	0	—	_	
115.2k	—	—	_	—	—	—	—	_	—	—	_	—

39.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

39.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

39.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

39.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

39.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

39.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

39.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]