

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15354t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F15354/55 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RA6/ANA6/OSC2/CLKOUT/IOCA6	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	_	ADC Channel A6 input.
	OSC2	_	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver out- put.
	CLKOUT	—	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	-	Interrupt-on-change input.
RA7/ANA7/OSC1/CLKIN/IOCA7	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	_	ADC Channel A7 input.
	OSC1	XTAL	_	External Crystal/Resonator (LP, XT, HS modes) driver input
	CLKIN	TTL/ST	_	External digital clock input.
	IOCA7	TTL/ST	_	Interrupt-on-change input.
RB0/ANB0/C2IN1+/ZCD1/SS2 ⁽¹⁾ / CWG1IN ⁽¹⁾ /INT ⁽¹⁾ /IOCB0	RB0	TTL/ST	CMOS/OD	General purpose I/O.
CWGTINC/JINTC/JIOCBU	ANB0	AN	_	ADC Channel B0 input.
	C2IN1+	AN	_	Comparator 2 positive input.
	ZCD1	AN	AN	Zero-cross detect input pin (with constant current sink/ source).
	SS2 ⁽¹⁾	TTL/ST	-	MSSP2 SPI slave select input.
	CWG1IN ⁽¹⁾	TTL/ST	_	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	-	External interrupt request input.
	IOCB0	TTL/ST	-	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/SCL2 ^(3,4) / SCK2 ⁽¹⁾ /IOCB1	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SCR2. MOCDI	ANB1	AN	-	ADC Channel B1 input.
	C1IN3-	AN	_	Comparator 1 negative input.
	C2IN3-	AN	_	Comparator 2 negative input.
	SCL2 ^(3,4)	l ² C	OD	MSSP2 I ² C clock input/output.
	SCK2 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP2 SPI serial clock (default input location, SCK2 is a PPS remappable input and output).
	IOCB1	TTL/ST	-	Interrupt-on-change input.
RB2/ANB2/SDA2 ^(3,4) /SDI2 ⁽¹⁾ /IOCB2	RB2	TTL/ST	CMOS/OD	General purpose I/O.
	ANB2	AN	_	ADC Channel B2 input.
	SDA2 ^(3,4)	l ² C	OD	MSSP2 I ² C serial data input/output.
	SDI2 ⁽¹⁾	TTL/ST	_	MSSP2 SPI serial data input.
	IOCB2	TTL/ST	_	Interrupt-on-change input.

HV = High Voltage XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 8-10												
CPU CORE REGISTERS; see Table 4-3 for specifics												
x0Ch/ x8Ch Unimplemented x1Fh/ x9Fh												

8.15 Register Definitions: Power Control

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7	•						bit 0

Legend:										
HC = Bit is cle	ared by hardw	are	HS = Bit is set by hardware							
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition							
bit 7	1 = A Stack	ack Overflow Flag bit Overflow occurred Overflow has not occurre	ed or cleared by firmware							
bit 6	 0 = A Stack Overflow has not occurred or cleared by firmware STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware 									
bit 5										
bit 4	1 = A Watch		it occurred or set to '1' by firmware urred (cleared by hardware)							
bit 3	1 = A MCLR	CLR Reset Flag bit Reset has not occurred o Reset has occurred (clea								
bit 2	1 = A reset		executed or set to '1' by firmware ecuted (cleared by hardware)							
bit 1	1 = No Powe	-on Reset Status bit er-on Reset occurred -on Reset occurred (must	t be set in software after a Power-on Reset occurs)							
bit 0	1 = No Brow	-out Reset Status bit n-out Reset occurred -out Reset occurred (mus	t be set in software after a Power-on Reset or Brown-out Reset							

U-0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0			
_	ZCDIE	_	_	_	_	C2IE	C1IE			
bit 7							bit 0			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res										
'1' = Bit is set '0' = Bit is cleared										
bit 7 Unimplemented: Read as '0'										
bit 6	ZCDIE: Zero-	-Cross Detectio	n (ZCD) Inter	rupt Enable bit						
		the ZCD interru								
	0 = Disables	the ZCD interr	upt							
bit 5-2	Unimplemen	nted: Read as ')'							
bit 1		arator C2 Interru								
		the Comparato the Comparato								
bit 0		arator C1 Interru								
	•	the Comparato	•							
		the Comparato								
		-								
Note:	Bit PEIE of the IN	ITCON register	must be							
	set to enable a									
	controlled by regis									

REGISTER 10-4: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	—	—	—	INTEDG	119
PIE0	_	—	TMR0IE	IOCIE	—	_	—	INTE	120
PIE1	OSFIE	CSWIE	_	_	—	—	—	ADIE	121
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	122
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	123
PIE4	_	—	_	-	—	—	TMR2IE	TMR1IE	124
PIR0	_	—	TMR0IF	IOCIF	—	—	—	INTF	128
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	129
PIR2	_	ZCDIF	_	_	—	_	C2IF	C1IF	130
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	131
PIR4	_	_	_	_	_	_	TMR2IF	TMR1IF	132
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	209
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	209
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	209
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	210
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	210
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	210
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	211
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	211
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	211
IOCEP		—			IOCEP3	—	—	_	212
IOCEN		—			IOCEN3	_	—	_	212
IOCEF					IOCEF3	—	—		213
STATUS	_	_	_	TO	PD	Z	DC	С	29
VREGCON		—	_	_	—	—	VREGPM	_	141
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		142
WDTCON0	_	_		١	NDTPS<4:0>	>		SWDTEN	148

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0			
bit 7 bit 0										
Legend:										
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets						

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited

'1' = Bit is set

0 = Port pin slews at maximum rate

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

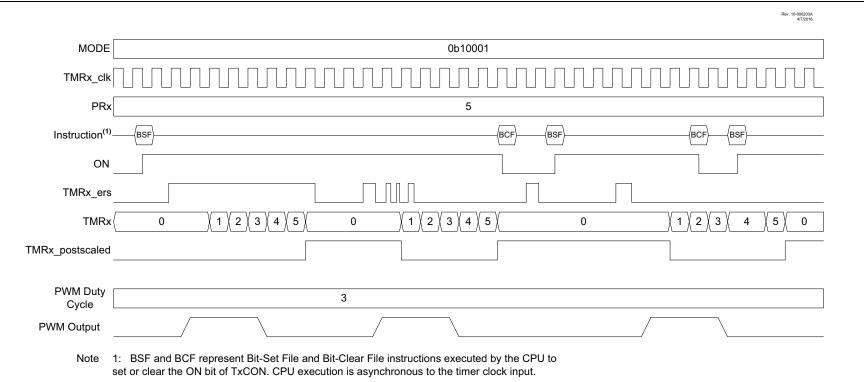

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits For RA<7:0> pins, respectively 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	173
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	173
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	174
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	174
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	175
ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	175
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	176
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	176

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Unimplemented, read as '1'.

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN	_	OUT	FMT		MODE	<3:0>		317
CCP2CON	EN	_	OUT	FMT			317		
CCPTMRS0	—	_	—	—	C2TSEL<1:0> C1TSEL<1:0>				320
CCPTMRS1	—	_	—	—	P2TSE	L<1:0>	C1TSE	L<1:0>	321
INTCON	GIE	PEIE	—	—	—	—		INTEDG	119
PIE1	OSFIE	CSWIE	—	—	—	_	_	ADIE	121
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	129
PR2	Timer2 Modu	ule Period Re	gister						
TMR2	Holding Reg	ister for the 8	-bit TMR2 Re	gister					
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		306
T2CLKCON	_	_	_	_		CS<	3:0>		305
T2RST	_	_	_	— RSEL<3:0>					
T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			307

TABLE 27-2:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			CCPRx	<15:8>			
bit 7							bit 0
l egend:							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
CCPxMODE = Compare mode
CCPRxH<7:0>: MS Byte compared to TMR1H
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits

REGISTER 28-5: CCPTMRS0: CCP TIMERS CONTROL 0 REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
—	—	—	—	C2TSE	EL<1:0>	C1TSE	L<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3-2	C2TSEL<1:0>: CCP2 Timer Selection 11 = CCP2 based on TMR1 (Capture/Compare) or TMR2 (PWM) 10 = CCP2 based on TMR1 (Capture/Compare) or TMR2 (PWM) 01 = CCP2 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved
bit 1-0	C1TSEL<1:0>: CCP2 Timer Selection 11 = CCP1 based on TMR1 (Capture/Compare) or TMR2 (PWM) 10 = CCP1 based on TMR1 (Capture/Compare) or TMR2 (PWM) 01 = CCP1 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved

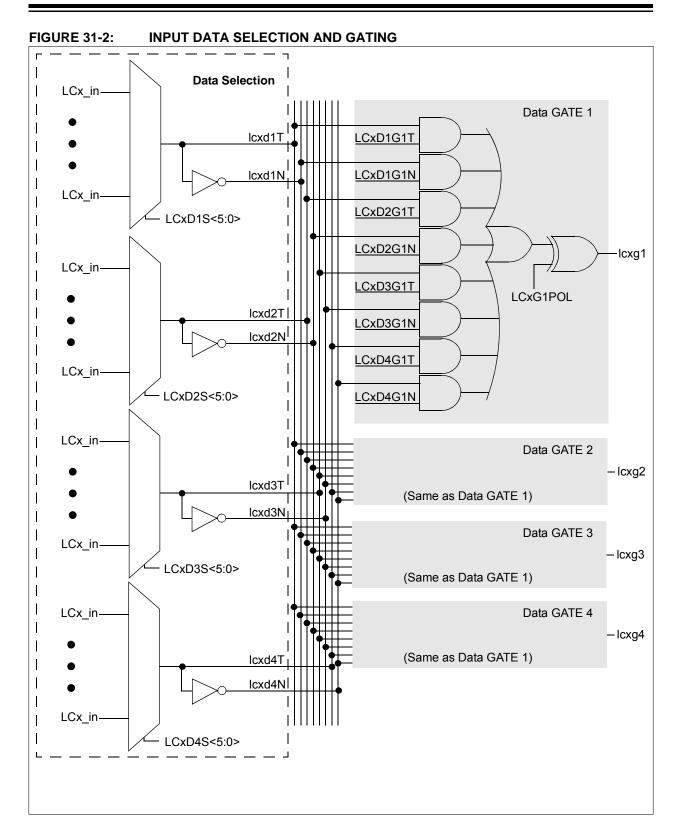
REGISTER 30-3: CWG1DBR: CWG1 RISING DEAD-BAND COUNTER REGISTER

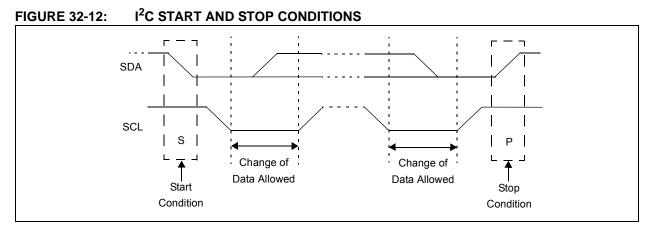
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		DBR<5:0>					
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared q = Value depends on condition					

bit 7-6 Unimplemented: Read as '0'

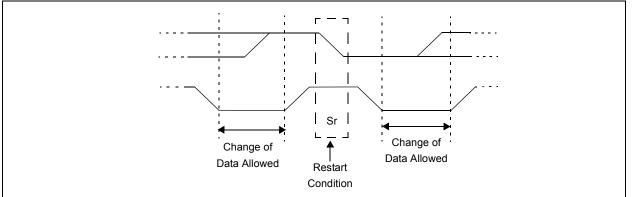
bit 5-0 DBR<5:0>: Rising Event Dead-Band Value for Counter bits

REGISTER 30-4: CWG1DBF: CWG1 FALLING DEAD-BAND COUNTER REGISTER


U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBF	<5:0>		
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'


bit 5-0 DBF<5:0>: Falling Event Dead-Band Value for Counter bits

PIC16(L)F15354/55

32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the \overline{ACK} value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

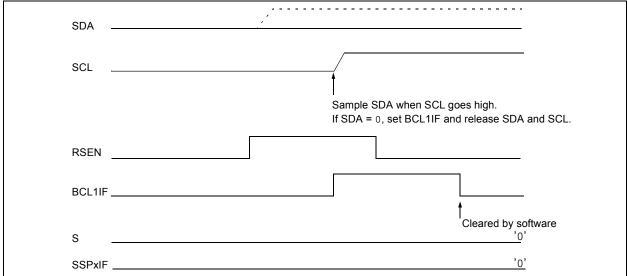
There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

32.6.13.2 Bus Collision During a Repeated Start Condition

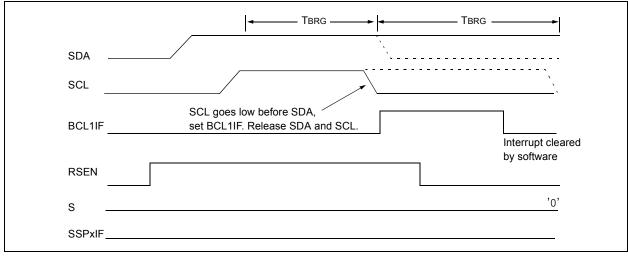
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).


When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

33.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.

Table 33-1 contains the formulas for determining the baud rate. Example 33-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 33-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 33-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPxBRGH:SPxBRGL:

$X = \frac{Fosc}{\frac{Desired Baud Rate}{64} - 1}$
$= \frac{\frac{16000000}{9600}}{64} - 1$
= [25.042] = 25
$Calculated Baud Rate = \frac{16000000}{64(25+1)}$
= 9615
Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$
$=\frac{(9615-9600)}{9600} = 0.16\%$

33.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note:	If the device is configured as a slave and
	the TX/CK function is on an analog pin, the
	corresponding ANSEL bit must be cleared.

33.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

33.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

33.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPxBRGH, SPxBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RXxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RXxIE was set.
- 9. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

RX/DT pin	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin (SCKP = 0)		
TX/CK pin (SCKP = 1)		
Write to bit SREN		
SREN bit		
CREN bit		<u>'0'</u>
RXxIF bit (Interrupt) ————		~
Read RCxREG ———		1
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.	

FIGURE 33-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0		
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
bit 7							bit 0		
Legend:						(2)			
R = Readable bit		W = Writable		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reset							
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	SPEN: Serial	Port Enable bi	it(1)						
	1 = Serial port enabled								
		rt disabled (he	ld in Reset)						
bit 6	RX9: 9-Bit Re	eceive Enable I	oit						
	1 = Selects 9-bit reception								
	0 = Selects 8	•	-1						
bit 5	SREN: Single Receive Enable bit								
	<u>Asynchronous mode</u> : Unused in this mode – value ignored								
	Synchronous mode – Master:								
	1 = Enables single receive								
	0 = Disables single receive								
	This bit is cleared after reception is complete. <u>Synchronous mode – Slave</u>								
		s mode – value							
bit 4	CREN: Continuous Receive Enable bit								
	Asynchronous mode:								
	1 = Enables continuous receive until enable bit CREN is cleared								
	0 = Disables continuous receive Svnchronous mode:								
	1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)								
		continuous red					,		
bit 3	ADDEN: Add	ress Detect Er	able bit						
	Asynchronous mode 9-bit (RX9 = 1):								
	1 = Enables address detection – enable interrupt and load of the receive buffer when the ninth bit in								
	the receive buffer is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit								
	Asynchronous mode 8-bit ($RX9 = 0$):								
	Unused in this	s mode – value	e ignored						
bit 2	FERR: Framing Error bit								
	 1 = Framing error (can be updated by reading RCxREG register and receive next valid byte) 0 = No framing error 								
bit 1	OERR: Overr	un Error bit							
	1 = Overrun 0 = No overr		leared by clea	aring bit CREN)				
bit 0		bit of Received							
	This can be address/data bit or a parity bit and must be calculated by user firmware.								
	e EUSART mod sociated TRIS b				state to drive as	needed. Confi	gure the		

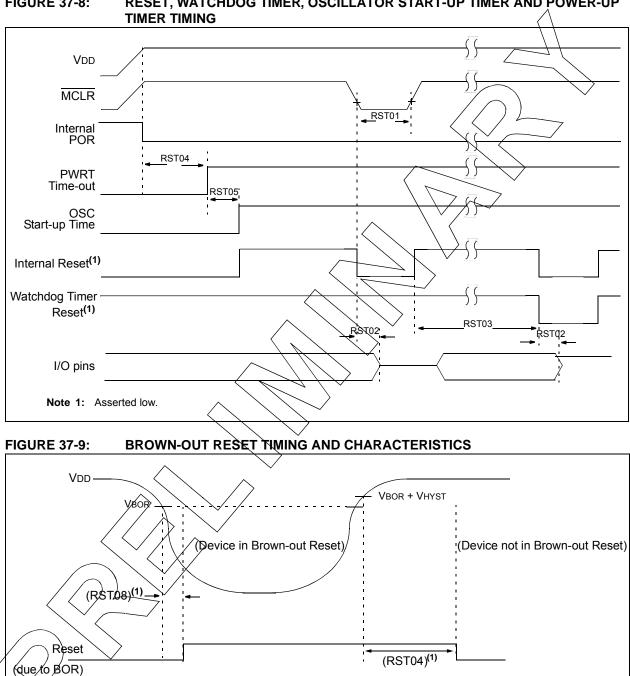
REGISTER 33-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER

'1' = Bit is set

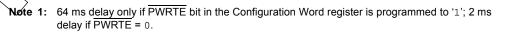
REGISTER 33-7: SPxBRGH^(1, 2): BAUD RATE GENERATOR HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPxBF	RG<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res					ther Resets		

bit 7 SPxBRG<15:8>: Upper eight bits of the Baud Rate Generator


'0' = Bit is cleared

Note 1: SPxBRGH value is ignored for all modes unless BAUDxCON<BRG16> is active.


2: Writing to SPxBRGH resets the BRG counter.

37.2 Standard Operating Conditions

37.2 Standard Operating Conditions	Λ
The standard operating conditions for any device are defined as:	$\langle \rangle$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
VDD — Operating Supply Voltage ⁽¹⁾	\sim
PIC16LF15354/55	
VDDMIN (Fosc \leq 16 MHz)	
VDDMIN (Fosc \leq 32 MHz)	+2.5V
VDDMAX	+3.6V
PIC16F15354/55	\sim
VDDMIN (Fosc \leq 16 MHz)	+2.3V
VDDMIN (Fosc \leq 32 MHz)	+2.5V
VDDMAX	
TA — Operating Ambient Temperature Range	$\langle \rangle$
Industrial Temperature	
TA_MIN	-40°C
	+85°C
Extended Temperature	\geq
TA_MIN	~40°C
Note 1: See Parameter Supply Voltage, DS Characteristics: Supply V	/oltage.

FIGURE 37-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

PIC16(L)F15354/55

TABLE 37-25: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol Thigh	Characteristic		Min.	Max.	Units	Conditions
SP100*		Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy			
SP101* TLOW	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy			
SP102* Tr	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103* T	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106* 1	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS]
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
SP111	Св	Bus capacitive loading		_	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.