

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 32MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                    |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                        |
| Number of I/O              | 25                                                                           |
| Program Memory Size        | 7KB (4K x 14)                                                                |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | 224 x 8                                                                      |
| RAM Size                   | 512 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                  |
| Data Converters            | A/D 24x10b; D/A 1x5b                                                         |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                               |
| Supplier Device Package    | 28-SOIC                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15354t-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

### Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

## 4.1.1 READING PROGRAM MEMORY AS DATA

There are three methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. The third method is to use the NVMREG interface to access the program memory. For an example of NVREG interface use, reference Section 13.3, NVMREG Access.

#### 4.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 4-1.

EXAMPLE 4-1: RETLW INSTRUCTION

| constants         |                     |
|-------------------|---------------------|
| BRW               | ;Add Index in W to  |
|                   | ;program counter to |
|                   | ;select data        |
| RETLW DATA0       | ;Index0 data        |
| RETLW DATA1       | ;Index1 data        |
| RETLW DATA2       |                     |
| RETLW DATA3       |                     |
|                   |                     |
|                   |                     |
| my_function       |                     |
| ; LOTS OF CODE    |                     |
| MOVLW DATA_IN     | DEX                 |
| call constants    |                     |
| ; THE CONSTANT IS | IN W                |
|                   |                     |

The BRW instruction makes this type of table very simple to implement.

#### 4.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of an FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that read the program memory via the FSR require one extra instruction cycle to complete. Example 4-2 demonstrates reading the program memory via an FSR.

The High directive will set bit 7 if a label points to a location in the program memory.

#### EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

| constants              |              |
|------------------------|--------------|
| RETLW DATA0            | ;Index0 data |
| RETLW DATA1            | ;Index1 data |
| RETLW DATA2            |              |
| RETLW DATA3            |              |
| my_function            |              |
| ; LOTS OF CODE         |              |
| MOVLW LOW constant     | ts           |
| MOVWF FSR1L            |              |
| MOVLW HIGH constan     | nts          |
| MOVWF FSR1H            |              |
| MOVIW 0[FSR1]          |              |
| ;THE PROGRAM MEMORY IS | IN W         |

| TABLE 4-10: SP | PECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED) |
|----------------|---------------------------------------------------------|
|----------------|---------------------------------------------------------|

| Address  | Name                                            | Bit 7              | Bit 6                                   | Bit 5 | Bit 4  | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR, BOR | V <u>alue o</u> n:<br>MCLR |
|----------|-------------------------------------------------|--------------------|-----------------------------------------|-------|--------|---------|-------|-------|-------|-----------------------|----------------------------|
| Bank 2   |                                                 |                    |                                         |       |        |         |       |       |       |                       |                            |
|          | CPU CORE REGISTERS; see Table 4-3 for specifics |                    |                                         |       |        |         |       |       |       |                       |                            |
| 10Ch<br> | 0ChUnimplemented                                |                    |                                         |       |        |         |       |       |       | _                     | —                          |
| 119h     | RC1REG                                          | EUSART Receive Dat | a Register                              |       |        |         |       |       |       | 0000 0000             | 0000 0000                  |
| 11Ah     | TX1REG                                          | EUSART Transmit Da | ta Register                             |       |        |         |       |       |       | 0000 0000             | 0000 0000                  |
| 11Bh     | SP1BRGL                                         |                    |                                         |       | SP1BR0 | G<7:0>  |       |       |       | 0000 0000             | 0000 0000                  |
| 11Ch     | SP1BRGH                                         |                    |                                         |       | SP1BRG | i<15:8> |       |       |       | 0000 0000             | 0000 0000                  |
| 11Dh     | RC1STA                                          | SPEN               | SPEN RX9 SREN CREN ADDEN FERR OERR RX9D |       |        |         |       |       |       | 0000 0000             | 0000 0000                  |
| 11Eh     | TX1STA                                          | CSRC               | TX9                                     | TXEN  | SYNC   | SENDB   | BRGH  | TRMT  | TX9D  | 0000 0010             | 0000 0010                  |
| 11Fh     | BAUD1CON                                        | ABDOVF             | RCIDL                                   | _     | SCKP   | BRG16   | _     | WUE   | ABDEN | 01-0 0-00             | 01-0 0-00                  |

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

## PIC16(L)F15354/55

## TABLE 5-1: BOOT BLOCK SIZE BITS

| BBEN | BBSIZE<2:0> | Actual Boo<br>User Program Me | Last Boot Block |               |
|------|-------------|-------------------------------|-----------------|---------------|
|      |             | PIC16(L)F15354                | PIC16(L)F15355  | Memory Access |
| 1    | xxx         | 0                             | 0               | _             |
| 0    | 111         | 512                           | 512             | 01FFh         |
| 0    | 110         | 1024                          | 1024            | 03FFh         |
| 0    | 101         | 2048                          | 2048            | 07FFh         |
| 0    | 100         | _                             | 4096            | 0FFFh         |

**Note:** The maximum boot block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE = 000 - 100 produce a boot block size of 4kW on a 8kW device.

#### **REGISTER 5-5: CONFIGURATION WORD 5: CODE PROTECTION**

|                |                                                        | U-1              | U-1                                   | U-1            | U-1 | U-1           | U-1              |
|----------------|--------------------------------------------------------|------------------|---------------------------------------|----------------|-----|---------------|------------------|
|                |                                                        |                  | —                                     | —              | —   | —             | —                |
|                |                                                        | bit 13           |                                       |                |     |               | bit 8            |
|                |                                                        |                  |                                       |                |     |               |                  |
| U-1            | U-1                                                    | U-1              | U-1                                   | U-1            | U-1 | U-1           | R/P-1            |
| _              | -                                                      | —                | —                                     | —              | —   | —             | CP               |
| bit 7          |                                                        |                  |                                       |                |     |               | bit 0            |
|                |                                                        |                  |                                       |                |     |               |                  |
| Legend:        |                                                        |                  |                                       |                |     |               |                  |
| R = Readal     | = Readable bit P = Programmable bit x = Bit is unknown |                  | U = Unimplemented bit, read<br>as '1' |                |     |               |                  |
| '0' = Bit is c | leared                                                 | '1' = Bit is set |                                       | W = Writable b | bit | n = Value whe | n blank or after |

bit 13-1 **Unimplemented:** Read as '1'

bit 0

- CP: Program Flash Memory Code Protection bit
  - 1 = Program Flash Memory code protection disabled
  - 0 = Program Flash Memory code protection enabled

Bulk Erase

| TABLE 9-3: | SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES |
|------------|----------------------------------------------------|
|------------|----------------------------------------------------|

| Name    | Bit 7   | Bit 6   | Bit 5     | Bit 4 | Bit 3      | Bit 2      | Bit 1 | Bit 0 | Register<br>on Page |
|---------|---------|---------|-----------|-------|------------|------------|-------|-------|---------------------|
| OSCCON1 | —       |         | NOSC<2:0> |       |            | NDIV<3:0>  |       |       | 108                 |
| OSCCON2 | —       |         | COSC<2:0> |       |            | CDIV<3:0>  |       |       | 108                 |
| OSCCON3 | CWSHOLD | SOSCPWR | -         | ORDY  | NOSCR      | _          | —     | _     | 109                 |
| OSCFRQ  | —       | —       | _         | —     | —          | HFFRQ<2:0> |       |       | 112                 |
| OSCSTAT | EXTOR   | HFOR    | MFOR      | LFOR  | SOR        | ADOR       | —     | PLLR  | 110                 |
| OSCTUNE | —       | —       |           |       | HFTUN<5:0> |            |       |       |                     |
| OSCEN   | EXTOEN  | HFOEN   | MFOEN     | LFOEN | SOSCEN     | ADOEN      | —     | _     | 111                 |

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

## TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

| Name    | Bits | Bit -/7 | Bit -/6     | Bit 13/5 | Bit 12/4 | Bit 11/3 | Bit 10/2 | Bit 9/1    | Bit 8/0  | Register<br>on Page |
|---------|------|---------|-------------|----------|----------|----------|----------|------------|----------|---------------------|
|         | 13:8 | _       | —           | FCMEN    | —        | CSWEN    | —        | —          | CLKOUTEN | 75                  |
| CONFIGT | 7:0  |         | RSTOSC<2:0> |          |          | —        | I        | EXTOSC<2:0 | >        | /5                  |

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

| FIGURE 10-2:                      | INTERRUPT LA                                                                      | TENCY                                  |                                      |                    |                |                              |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------|----------------|------------------------------|--|--|
|                                   |                                                                                   |                                        |                                      |                    |                | Rev. 10-030269E<br>8/31/2016 |  |  |
|                                   | 3   Q4 Q1   Q2   Q3   Q4                                                          |                                        | Q1   Q2   Q3   Q4                    |                    |                | Q1   Q2   Q3   Q4            |  |  |
|                                   |                                                                                   |                                        |                                      |                    |                |                              |  |  |
| INT<br>pin                        | INT<br>pinI<br>Valid Interrupt<br>window <sup>(1)</sup> 1 Cycle Instruction at PC |                                        |                                      |                    |                |                              |  |  |
| Fetch PC -                        | 1 PC                                                                              | PC + 1                                 |                                      | PC = 0x0004        | PC = 0x0005    | PC = 0x0006                  |  |  |
| Execute PC -                      | 21 PC - 1                                                                         | PC                                     | NOP                                  | NOP                | PC = 0x0004    | PC = 0x0005                  |  |  |
|                                   | Indeterminate<br>Latency <sup>(2)</sup>                                           |                                        | Latency                              |                    |                |                              |  |  |
| Note 1: An interro<br>2: Since an | upt may occur at any t<br>interrupt may occur a                                   | ime during the in<br>ny time during th | terrupt window.<br>le interrupt wind | ow, the actual lat | ency can vary. |                              |  |  |



|                           | Q1   Q2   Q3   Q4                               | Q1   Q2   Q3   Q4                                | Q1   Q2   Q3   Q4                                  | Q1   Q2   Q3   Q4                     | 4 Q1   Q2   Q3   Q4     |
|---------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------|-------------------------|
| OSC1                      |                                                 |                                                  |                                                    |                                       |                         |
|                           | (4)                                             |                                                  |                                                    |                                       |                         |
| INT pin                   |                                                 | . (1)                                            | 1<br>1                                             | 1                                     | <u> </u>                |
| INTF                      | , (1) (5)                                       |                                                  | Interrupt Latency (2)                              | -<br>-<br>-<br>-<br>-<br>-<br>-       |                         |
| GIE                       |                                                 |                                                  |                                                    | · · · · · · · · · · · · · · · · · · · |                         |
| INSTRUCTION               | <br>I FLOW                                      |                                                  |                                                    | <u>-</u>                              | $\frac{1}{1}$           |
| PC                        | C PC                                            | PC + 1                                           | PC + 1                                             | 0004h                                 | X0005h                  |
| Instruction (<br>Fetched  | Inst (PC)                                       | Inst (PC + 1)                                    | -                                                  | Inst (0004h)                          | Inst (0005h)            |
| Instruction (<br>Executed | Inst (PC – 1)                                   | Inst (PC)                                        | Forced NOP                                         | Forced NOP                            | Inst (0004h)            |
| Note 1: IN                | NTF flag is sampled here                        | e (every Q1).                                    |                                                    |                                       |                         |
| 2: A                      | synchronous interrupt la atency is the same whe | atency = 3-5 Tcy. Syn<br>her Inst (PC) is a sing | nchronous latency = 3<br>gle cycle or a 2-cycle in | 3-4 TCY, where TCY =                  | instruction cycle time. |
| 3: F                      | or minimum width of IN                          | pulse, refer to AC sp                            | ecifications in Section                            | n 37.0 "Electrical Spe                | ecifications".          |

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

| R/W-0/0                                           | R/W-0/0                            | R/W-0/0           | R/W-0/0                | U-0          | U-0              | U-0            | R/W-0/0      |
|---------------------------------------------------|------------------------------------|-------------------|------------------------|--------------|------------------|----------------|--------------|
| CLC4IE                                            | CLC3IE                             | CLC2IE            | CLC1IE                 |              | <u> </u>         | —              | TMR1GIE      |
| bit 7                                             |                                    |                   |                        |              |                  |                | bit 0        |
|                                                   |                                    |                   |                        |              |                  |                |              |
| Legend:                                           |                                    |                   |                        |              |                  |                |              |
| R = Readab                                        | le bit                             | W = Writable      | bit                    | U = Unimple  | mented bit, read | d as '0'       |              |
| u = Bit is un                                     | changed                            | x = Bit is unkr   | nown                   | -n/n = Value | at POR and BC    | R/Value at all | other Resets |
| '1' = Bit is se                                   | et                                 | '0' = Bit is clea | ared                   | HS = Hardw   | are set          |                |              |
|                                                   |                                    |                   |                        |              |                  |                |              |
| bit 7                                             | CLC4IE: CLC                        | 4 Interrupt Ena   | able bit               |              |                  |                |              |
|                                                   | 1 = CLC4 in                        | terrupt enabled   | t.                     |              |                  |                |              |
|                                                   | 0 = CLC4 in                        | terrupt disable   | d                      |              |                  |                |              |
| bit 6                                             | CLC3IE: CLC                        | 3 Interrupt Ena   | able bit               |              |                  |                |              |
|                                                   | 1 = CLC3 in                        | terrupt enabled   | d<br>d                 |              |                  |                |              |
| hit E                                             |                                    |                   | u<br>bla bit           |              |                  |                |              |
| DIL D                                             | 1 = CLC2 in                        | terrunt enabler   |                        |              |                  |                |              |
|                                                   | 0 = CLC2 in                        | terrupt disable   | d                      |              |                  |                |              |
| bit 4                                             | CLC1IE: CLC                        | 1 Interrupt Ena   | able bit               |              |                  |                |              |
|                                                   | 1 = CLC1 in                        | terrupt enabled   | t                      |              |                  |                |              |
|                                                   | 0 = CLC1 in                        | terrupt disable   | d                      |              |                  |                |              |
| bit 3-1                                           | bit 3-1 Unimplemented: Read as '0' |                   |                        |              |                  |                |              |
| bit 0 TMR1GIE: Timer1 Gate Interrupt Enable bit   |                                    |                   |                        |              |                  |                |              |
| 1 = Enables the Timer1 gate acquisition interrupt |                                    |                   |                        |              |                  |                |              |
|                                                   | 0 = Disables                       | s the Timer1 ga   | te acquisition         | i interrupt  |                  |                |              |
|                                                   |                                    |                   |                        |              |                  |                |              |
| Note: E                                           | Bit PEIE of the IN                 | I CON register    | must be                |              |                  |                |              |
| 5<br>C                                            | controlled by regist               | ters PIF1-PIF7    | nit <del>e</del> n upt |              |                  |                |              |
| ı                                                 |                                    |                   | -                      |              |                  |                |              |

## REGISTER 10-7: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

# PIC16(L)F15354/55

| REGIST      | ER 10-12: PIR2:                                                                         | PERIPHERA                                                                | L INTERRUI                                       | PT REQUES       |                  | 2                |              |
|-------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|-----------------|------------------|------------------|--------------|
| U-0         | R/W/HS-0/0                                                                              | U-0                                                                      | U-0                                              | U-0             | U-0              | R/W/HS-0/0       | R/W/HS-0/0   |
| _           | ZCDIF                                                                                   | _                                                                        | _                                                | _               | _                | C2IF             | C1IF         |
| bit 7       |                                                                                         |                                                                          |                                                  |                 |                  |                  | bit (        |
|             |                                                                                         |                                                                          |                                                  |                 |                  |                  |              |
| Legend:     |                                                                                         |                                                                          |                                                  |                 |                  |                  |              |
| R = Read    | dable bit                                                                               | W = Writable                                                             | bit                                              | U = Unimplei    | mented bit, read | l as '0'         |              |
| u = Bit is  | unchanged                                                                               | x = Bit is unkr                                                          | Iown                                             | -n/n = Value    | at POR and BO    | R/Value at all c | other Resets |
| '1' = Bit i | s set                                                                                   | '0' = Bit is clea                                                        | ared                                             | HS = Hardwa     | are set          |                  |              |
|             |                                                                                         |                                                                          |                                                  |                 |                  |                  |              |
| bit 7       | Unimplemen                                                                              | ted: Read as '                                                           | כ'                                               |                 |                  |                  |              |
| bit 6       | ZCDIF: Zero-                                                                            | Cross Detect (2                                                          | ZCD1) Interru                                    | pt Flag bit     |                  |                  |              |
|             | 1 = An enable<br>0 = No ZCD1                                                            | ed rising and/or<br>event has occ                                        | falling ZCD1<br>urred                            | event has bee   | en detected (mus | st be cleared ir | n software)  |
| bit 5-2     | Unimplemen                                                                              | ted: Read as '                                                           | כי                                               |                 |                  |                  |              |
| bit 1       | <b>C2IF</b> : Compa<br>1 = Compara<br>0 = Compara                                       | rator C2 Interru<br>tor 2 interrupt a<br>tor 2 interrupt r               | upt Flag bit<br>isserted (must<br>iot asserted   | t be cleared in | software)        |                  |              |
| bit 0       | C1IF: Compa                                                                             | rator C1 Interru                                                         | upt Flag bit                                     |                 |                  |                  |              |
|             | 1 = Comparat<br>0 = Comparat                                                            | tor 1 interrupt a<br>tor 1 interrupt r                                   | isserted (must<br>ot asserted                    | t be cleared in | software)        |                  |              |
|             |                                                                                         |                                                                          |                                                  |                 |                  |                  |              |
| Note:       | Interrupt flag bits a<br>condition occurs, r<br>its corresponding<br>Enable bit, GIE, c | re set when an<br>egardless of the<br>enable bit or the<br>of the INTCON | interrupt<br>e state of<br>e Global<br>register. |                 |                  |                  |              |

prior to enabling an interrupt.

User software should ensure the appropriate interrupt flag bits are clear

## PIC16(L)F15354/55

#### 13.3.5 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

## FIGURE 13-6:

## FLASH PROGRAM MEMORY MODIFY



## 17.5 Register Definitions: Interrupt-on-Change Control

#### **REGISTER 17-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER**

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAP7  | IOCAP6  | IOCAP5  | IOCAP4  | IOCAP3  | IOCAP2  | IOCAP1  | IOCAP0  |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

IOCAP<7:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

#### REGISTER 17-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAN7  | IOCAN6  | IOCAN5  | IOCAN4  | IOCAN3  | IOCAN2  | IOCAN1  | IOCAN0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

**IOCAN<7:0>:** Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

## REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCAF7     | IOCAF6     | IOCAF5     | IOCAF4     | IOCAF3     | IOCAF2     | IOCAF1     | IOCAF0     |
| bit 7      |            |            |            |            |            |            | bit 0      |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared | HS - Bit is set in hardware                           |

bit 7-0

**IOCAF<7:0>:** Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin. Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

## 19.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The main purpose of the temperature sensor module is to provide a temperature-dependent voltage that can be measured by the Analog-to-Digital Converter.

The circuit's range of operating temperature falls between -40°C and +125°C. The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately.

## 19.1 Module Operation

The temperature-sensing circuit provides a voltage to the device ADC. The analog voltage output, VTSENSE, varies inversely to the device temperature.

Figure 19-1 shows a simplified block diagram of the temperature circuit.





The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 20.0** "**Analog-to-Digital Converter (ADC) Module**" for detailed information.

The ON/OFF bit for the module is located in the FVRCON register. See **Section 18.0** "**Fixed Voltage Reference (FVR)**" for more information. The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either High or Low range. The High range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range. High range requires a higher-bias voltage to operate and thus, a higher VDD is needed. The Low range is selected by clearing the TSRNG bit of the FVRCON register. The Low range generates a lower sensor voltage and thus, a lower VDD voltage is needed to operate the circuit.

## 19.2 Estimation of Temperature

This section describes how the sensor voltage can be used to estimate the temperature of the module. To use the sensor, the output voltage, VTSENSE, is measured and the corresponding temperature is determined. Equation 19-1 provides an estimate for the die temperature based on the VTSENSE value.

## EQUATION 19-1: SENSOR TEMPERATURE

$$T_{SENSE} = V_{TSENSE} \times (-Mt) + T_{OFFSET}$$

Where:

Mt = 1/Mv, where Mv = sensor voltage sensitivity (V/°C). TOFFSET is the temperature difference between the theoretical temperature and the actual temperature.

|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                     | -                                               |                  |                 |                   |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|------------------|-----------------|-------------------|--------------------------------------|
| R/W-0/0                                                                                                                                                                                                                                                                                                    | R/W-0/0                                                                                                                                                                                                                                                                                        | R/W-0/0                                                                             | R/W-0/0                                         | U-0              | U-0             | R/W-0/0           | R/W-0/0                              |
| ADFM                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                | ADCS<2:0>                                                                           |                                                 | —                | —               | ADPRE             | EF<1:0>                              |
| bit 7                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                                                                     |                                                 |                  | -<br>-          |                   | bit 0                                |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                     |                                                 |                  |                 |                   |                                      |
| Legend:                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |                                                                                     |                                                 |                  |                 |                   |                                      |
| R = Readal                                                                                                                                                                                                                                                                                                 | ble bit                                                                                                                                                                                                                                                                                        | W = Writable                                                                        | bit                                             | U = Unimpler     | mented bit, rea | d as '0'          |                                      |
| u = Bit is ur                                                                                                                                                                                                                                                                                              | nchanged                                                                                                                                                                                                                                                                                       | x = Bit is unkr                                                                     | iown                                            | -n/n = Value     | at POR and BC   | OR/Value at all o | other Resets                         |
| '1' = Bit is s                                                                                                                                                                                                                                                                                             | set                                                                                                                                                                                                                                                                                            | '0' = Bit is clea                                                                   | ared                                            |                  |                 |                   |                                      |
| <ul> <li>bit 7 ADFM: ADC Result Format Select bit</li> <li>1 = Right justified. Six Most Significant bits of ADRESH are set to '0' when the conversion result is loaded.</li> <li>0 = Left justified. Six Least Significant bits of ADRESL are set to '0' when the conversion result is loaded.</li> </ul> |                                                                                                                                                                                                                                                                                                |                                                                                     |                                                 |                  |                 |                   | ersion result is<br>ersion result is |
| bit 6-4                                                                                                                                                                                                                                                                                                    | ADCS<2:0>:<br>111 = ADCR<br>110 = Fosc/<br>101 = Fosc/<br>100 = Fosc/<br>011 = ADCR<br>010 = Fosc/<br>001 = Fosc/<br>001 = Fosc/<br>000 = Fosc/                                                                                                                                                | ADC Conversion<br>C (dedicated R<br>64<br>16<br>4<br>C (dedicated R<br>32<br>8<br>2 | on Clock Sele<br>C oscillator)<br>C oscillator) | ect bits         |                 |                   |                                      |
| bit 3-2                                                                                                                                                                                                                                                                                                    | Unimplemer                                                                                                                                                                                                                                                                                     | ted: Read as '                                                                      | )'                                              |                  |                 |                   |                                      |
| bit 1-0                                                                                                                                                                                                                                                                                                    | Dit 1-0       ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits         11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module <sup>(1)</sup> 10 = VREF+ is connected to external VREF+ pin <sup>(1)</sup> 01 = Reserved         00 = VREF+ is connected to VDD |                                                                                     |                                                 |                  |                 |                   |                                      |
| Note 1:                                                                                                                                                                                                                                                                                                    | When selecting th specification exist                                                                                                                                                                                                                                                          | e VREF+ pin as<br>s. See Table 37                                                   | the source of<br>-14 for details                | the positive ref | ference, be awa | are that a minin  | num voltage                          |

### REGISTER 20-2: ADCON1: ADC CONTROL REGISTER 1

## 23.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 23-1) contains Control and Status bits for the following:

- Enable
- Output
- · Output polarity
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- The CMxNSEL and CMxPSEL (Register 23-3 and Register 23-4) contain control bits for the following:
  - Positive input channel selection
  - Negative input channel selection

#### 23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

#### 23.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 15-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

## 23.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input conditions, including polarity control.

### TABLE 23-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

| Input Condition | CxPOL | CxOUT |
|-----------------|-------|-------|
| CxVN > CxVP     | 0     | 0     |
| CxVN < CxVP     | 0     | 1     |
| CxVN > CxVP     | 1     | 1     |
| CxVN < CxVP     | 1     | 0     |

## 24.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

## 24.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the ZCDDIS Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the EN bit of the ZCDxCON register must be set to enable the ZCD module.

## 25.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 25-2 displays the clock source selections.

#### 25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

#### 25.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

### 25.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON1 register.

## 25.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0 register.

## 25.5 Operation during Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

## 25.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = 1), the CPU will be interrupted and the device may wake from sleep (see Section 25.2 "Clock Source Selection" for more details).

## 25.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see Section 15.0 "Peripheral Pin Select (PPS) Module" for additional information). The Timer0 output can also be used by other peripherals, such as the Auto-conversion Trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (T0OUT) of the T0CON0 register (Register 25-1).

TMR0\_out will be one postscaled clock period when a match occurs between TMR0L and TMR0H in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0\_out rising clock edge.



## FIGURE 27-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

PIC16(L)F15354/55

## 32.8 Register Definitions: MSSPx Control

| R/W-0/0         | R/W-0/0                                                                                                                                                                                                   | R/HS/HC-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/HS/HC-0                                                                   | R/HS/HC-0                                              | R/HS/HC-0                                 | R/HS/HC-0           | R/HS/HC-0 |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|---------------------|-----------|--|
| SMP             | CKE <sup>(1)</sup>                                                                                                                                                                                        | D/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P <sup>(2)</sup>                                                            | S <sup>(2)</sup>                                       | R/W                                       | UA                  | BF        |  |
| bit 7           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                        |                                           |                     | bit 0     |  |
|                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                        |                                           |                     |           |  |
| Legend:         | - <b>L</b> .'4                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                        |                                           | ,                   |           |  |
| R = Readable    |                                                                                                                                                                                                           | vv = vvritable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             | U = Unimpleme                                          | ented bit, read as '0                     |                     | -         |  |
| u = Bit is uncr | hanged                                                                                                                                                                                                    | x = Bit is unknow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vn<br>d                                                                     | -n/n = value at                                        | POR and BOR/vail                          | ue at all other Res | els       |  |
|                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | u                                                                           |                                                        | vare sel/clear                            |                     |           |  |
| bit 7           | <b>SMP:</b> SPI Data<br><u>SPI Master mon</u><br>1 = Input data s<br>0 = Input data s<br><u>SPI Slave mod</u><br><u>SMP must be c</u><br><u>In I<sup>2</sup>C Master o</u><br>1 = Slew rate c             | Input Sample bit<br>de:<br>sampled at end of o<br>sampled at middle o<br>e:<br>leared when SPI is<br><u>r Slave mode:</u><br>control disabled for<br>aparted enabled for                                                                                                                                                                                                                                                                                                                                                                                                                                                | lata output time<br>of data output tir<br>used in Slave r<br>Standard Speed | ne<br>node<br>d mode (100 kHz                          | and 1 MHz)                                |                     |           |  |
| bit 6           | <b>CKE:</b> SPI Clock<br>In SPI Master of<br>1 = Transmit of<br>0 = Transmit of<br>In $I^2$ C mode on<br>1 = Enable input<br>0 = Disable SM                                                               | <ul> <li>slew rate control enabled for High-Speed mode (400 kHz)</li> <li>CKE: SPI Clock Edge Select bit (SPI mode only)<sup>(1)</sup></li> <li>In SPI Master or Slave mode:         <ul> <li>1 = Transmit occurs on transition from active to Idle clock state</li> <li>0 = Transmit occurs on transition from Idle to active clock state</li> <li>In I<sup>2</sup>C mode only:                  <ul> <li>1 = Enable input logic so that thresholds are compliant with SMBus specification</li> <li>0 = Disable SMBus specific inputs</li> </ul> </li> </ul> </li> </ul>                                               |                                                                             |                                                        |                                           |                     |           |  |
| bit 5           | <b>D/A</b> : Data/Addr<br>1 = Indicates th<br>0 = Indicates th                                                                                                                                            | ress bit (I <sup>2</sup> C mode on<br>the last byte rec<br>nat the last byte rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | only)<br>eived or transm<br>eived or transm                                 | itted was data<br>itted was address                    |                                           |                     |           |  |
| bit 4           | P: Stop bit <sup>(2)</sup><br>(I <sup>2</sup> C mode only<br>1 = Indicates th<br>0 = Stop bit was                                                                                                         | . This bit is cleared<br>lat a Stop bit has be<br>s not detected last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | when the MSSF<br>een detected las                                           | <sup>D</sup> module is disab<br>at (this bit is '0' on | led, SSPEN is clea<br>Reset)              | red.)               |           |  |
| bit 3           | S: Start bit <sup>(2)</sup><br>(I <sup>2</sup> C mode only<br>1 = Indicates th<br>0 = Start bit wa                                                                                                        | . This bit is cleared<br>hat a Start bit has be<br>s not detected last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | when the MSSF<br>een detected las                                           | <sup>D</sup> module is disab<br>at (this bit is '0' on | led, SSPEN is clea<br>Reset)              | red.)               |           |  |
| bit 2           | <b>R/W</b> : Read/Wri<br>This bit holds th<br>next Start bit, S<br>In I <sup>2</sup> C Slave mo<br>1 = Read<br>0 = Write<br>In I <sup>2</sup> C Master m<br>1 = Transmit i<br>0 = Transmit i<br>OR-ing th | <ul> <li>0 = Start bit was not detected last</li> <li>R/W: Read/Write bit information (I<sup>2</sup>C mode only)</li> <li>This bit holds the R/W bit info<u>rmation</u> following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit.</li> <li>In I<sup>2</sup>C Slave mode: <ol> <li>Read</li> <li>Write</li> <li>In I<sup>2</sup>C Master mode:</li> <li>Transmit is in progress</li> <li>Transmit is not in progress</li> <li>OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in IDLE mode</li> </ol> </li> </ul> |                                                                             |                                                        |                                           |                     |           |  |
| bit 1           | UA: Update Ad<br>1 = Indicates th<br>0 = Address do                                                                                                                                                       | <b>UA:</b> Update Address bit (10-bit I <sup>2</sup> C mode only)<br>1 = Indicates that the user needs to update the address in the SSPxADD register<br>0 = Address does not need to be updated                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                        |                                           |                     |           |  |
| bit 0           | BF: Buffer Full                                                                                                                                                                                           | Status bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                        |                                           |                     |           |  |
|                 | $\frac{\text{Receive (SPI a)}}{1 = \text{Receive co}}$ $0 = \text{Receive no}$ $\text{Transmit (}^{2}\text{C m}$                                                                                          | nd I <sup>2</sup> C modes):<br>mplete, SSPxBUF<br>t complete, SSPxB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is full<br>UF is empty                                                      |                                                        |                                           |                     |           |  |
|                 | 1 = Data transn<br>0 = Data transn                                                                                                                                                                        | nit in progress (doe<br>nit complete (does                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es not include the                                                          | $e \overline{ACK}$ and Stop b<br>ACK and Stop bits     | oits), SSPxBUF is fu<br>s), SSPxBUF is em | ull<br>pty          |           |  |
| Note 1:         | Polarity of clock state                                                                                                                                                                                   | is set by the CKP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit of the SSPx0                                                            | CON register.                                          |                                           |                     |           |  |

#### REGISTER 32-1: SSPxSTAT: SSPx STATUS REGISTER

2: This bit is cleared on Reset and when SSPEN is cleared.

## 33.1.2.3 Receive Interrupts

The RXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RXxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RXxIF interrupts are enabled by setting all of the following bits:

- RXxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RXxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

### 33.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

| Note: | If all receive characters in the receive   |
|-------|--------------------------------------------|
|       | FIFO have framing errors, repeated reads   |
|       | of the RCxREG will not clear the FERR bit. |

#### 33.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

## 33.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

#### 33.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RXxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

#### **TABLE 37-6:** THERMAL CHARACTERISTICS

| Standard Operating Conditions (unless otherwise stated) |           |                                        |              |       |                                                                                            |  |  |  |  |  |  |
|---------------------------------------------------------|-----------|----------------------------------------|--------------|-------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Param.<br>No.                                           | Sym.      | Characteristic                         | Тур.         | Units | Conditions                                                                                 |  |  |  |  |  |  |
| TH01                                                    | θJA       | Thermal Resistance Junction to Ambient | 60           | °C/W  | 28-pin SPDIP package                                                                       |  |  |  |  |  |  |
|                                                         |           |                                        | 80           | °C/W  | 28-pin SOIC package                                                                        |  |  |  |  |  |  |
|                                                         |           |                                        | 90           | °C/W  | 28-pin SSOP package                                                                        |  |  |  |  |  |  |
|                                                         |           |                                        | 48           | °C/W  | 28-pin UQFN 4x4mm package                                                                  |  |  |  |  |  |  |
| TH02                                                    | θJC       | Thermal Resistance Junction to Case    | 31.4         | °C/W  | 28-pin SPQIP package                                                                       |  |  |  |  |  |  |
|                                                         |           |                                        | 24           | °C/W  | 28-pin SOIC package                                                                        |  |  |  |  |  |  |
|                                                         |           |                                        | 24           | °C/W  | 28-pin SSOP package                                                                        |  |  |  |  |  |  |
|                                                         |           |                                        | 12           | °C/W  | 28-pin UQFN 4x4mm package                                                                  |  |  |  |  |  |  |
| TH03                                                    | Тјмах     | Maximum Junction Temperature           | 150          | °C /  |                                                                                            |  |  |  |  |  |  |
| TH04                                                    | PD        | Power Dissipation                      | —            | ∕ w   | RD = PINTERNAL + PI/O                                                                      |  |  |  |  |  |  |
| TH05                                                    | PINTERNAL | Internal Power Dissipation             | _ `          | W     | PINTERNAL = IDD x VDD <sup>(1)</sup>                                                       |  |  |  |  |  |  |
| TH06                                                    | Pi/o      | I/O Power Dissipation                  | 7            | W     | $PI/O \neq \Sigma$ (IOL * VOL) + $\Sigma$ (IOH * (VDD - VOH))                              |  |  |  |  |  |  |
| TH07                                                    | PDFR      | Derated Power                          | $\leftarrow$ | W     | $P_{\text{DFR}} = PD_{\text{MAX}} (T_{\text{J}} - T_{\text{A}})/\theta_{\text{J}} A^{(2)}$ |  |  |  |  |  |  |

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

© 2016 Microchip Technology Inc.

## PIC16(L)F15354/55

## TABLE 37-23: SPI MODE REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated) |                       |                                              |                     |            |       |       |                                  |  |  |  |
|---------------------------------------------------------|-----------------------|----------------------------------------------|---------------------|------------|-------|-------|----------------------------------|--|--|--|
| Param.<br>No.                                           | Symbol                | Characteristic                               | Min.                | Тур†       | Max.  | Units | Conditions                       |  |  |  |
| SP70*                                                   | TssL2scH,<br>TssL2scL | SS↓ to SCK↓ or SCK↑ input                    | 2.25*Tcy            | _          | —     | ns    |                                  |  |  |  |
| SP71*                                                   | TscH                  | SCK input high time (Slave mode)             | Tcy + 20            |            |       | ns    |                                  |  |  |  |
| SP72*                                                   | TscL                  | SCK input low time (Slave mode)              | Tcy + 20            | _          | _     | ns    |                                  |  |  |  |
| SP73*                                                   | TDIV2scH,<br>TDIV2scL | Setup time of SDI data input to SCK edge     | 100                 | —          | \     | ns    |                                  |  |  |  |
| SP74*                                                   | TscH2DIL,<br>TscL2DIL | Hold time of SDI data input to SCK edge      | 100                 | —          | 7     | ns    |                                  |  |  |  |
| SP75*                                                   | TDOR                  | SDO data output rise time                    | —                   | 10         | 25    | \ns/  | $3.0V \le VDD \le 5.5V$          |  |  |  |
|                                                         |                       |                                              | —                   | 25         | 50    | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |  |  |
| SP76*                                                   | TDOF                  | SDO data output fall time                    | —                   | 10         | 25    | ns    |                                  |  |  |  |
| SP77*                                                   | TssH2doZ              | SS <sup>↑</sup> to SDO output high-impedance | 10                  |            | 50    | ns    |                                  |  |  |  |
| SP78*                                                   | TscR                  | SCK output rise time                         |                     | 70         | _25_/ | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |  |  |  |
|                                                         |                       | (Master mode)                                | $\langle - \rangle$ | 25         | 50    | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |  |  |
| SP79*                                                   | TSCF                  | SCK output fall time (Master mode)           |                     | 10         | 25    | ns    |                                  |  |  |  |
| SP80*                                                   | TscH2doV,             | SDO data output valid after SCK edge 🧹       | $ \cdot $           | $\searrow$ | 50    | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |  |  |  |
|                                                         | TscL2doV              |                                              | / //-/              | $\searrow$ | 145   | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |  |  |
| SP81*                                                   | TDOV2sCH,<br>TDOV2sCL | SDO data output setup to SCK edge            | 1 YOX               | —          | —     | ns    |                                  |  |  |  |
| SP82*                                                   | TssL2doV              | SDO data output valid after 🕵 ↓ edge         | $\searrow$          | _          | 50    | ns    |                                  |  |  |  |
| SP83*                                                   | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK edge                          | 1.5 TCY + 40        | —          | —     | ns    |                                  |  |  |  |

\* These parameters are characterized but not tested.

- † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
  - only and are not tested.