

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355-e-ml

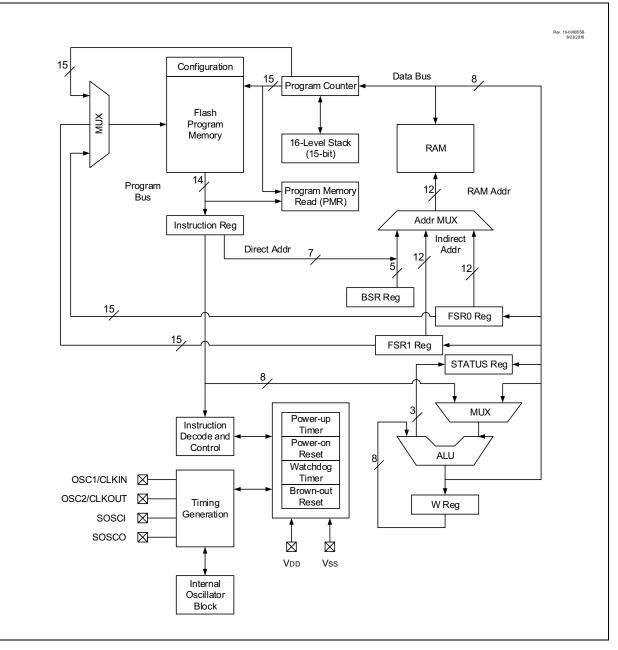
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F15354/55 are described within this data sheet. The PIC16(L)F15354/55 devices are available in 28-pin SPDIP, SSOP, SOIC, and UQFN packages. Figure 1-1 shows a block diagram of the PIC16(L)F15354/55 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.


TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F15354/55			
Analog-to-Digital Converter		•			
Digital-to-Analog Converter (DAC1)		•			
Fixed Voltage Reference (FVR)		•			
Enhanced Universal Synchronous/Asynchronous Receiver/ Transmitter (EUSART1 and EUSART2)		•			
Numerically Controlled Oscillator (NCO1)		•			
Temperature Indicator Module (TIM)		•			
Zero-Cross Detect (ZCD1)					
Capture/Compare/PWM Modules (CCP)					
00	CP1	•			
00	CP2	•			
Comparator Module (Cx)					
	C1	•			
	C2	•			
Configurable Logic Cell (CLC)					
	_C1	•			
	_C2	•			
	_C3	•			
	_C4	•			
Complementary Waveform Generator (CWG)					
	/G1	•			
Master Synchronous Serial Ports (MSSP)					
MSS		•			
MSS Dules Width Meduleter (DWA)	5P2	•			
Pulse-Width Modulator (PWM)	/M3				
	/M3 /M4	•			
	/M4 /M5	•			
	/M6	•			
Timers		-			
	ier0	•			
Tim		•			
	-	•			

3.0 ENHANCED MID-RANGE CPU

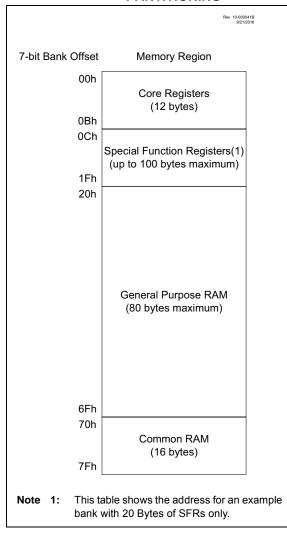
This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

FIGURE 3-1: CORE DATA PATH DIAGRAM

The hardware stack is 16-levels deep and has

Overflow and Underflow Reset capability. Direct,

Indirect, and Relative Addressing modes are available.


Two File Select Registers (FSRs) provide the ability to

read program and data memory.

4.3 Data Memory Organization

The data memory is partitioned into 64 memory banks with 128 bytes in each bank.

FIGURE 4-3: BANKED MEMORY PARTITIONING

Each bank consists of:

- · 12 core registers
- Up to 100 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

4.3.1 BANK SELECTION

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 4.6 "Indirect Addressing**" for more information.

Data memory uses a 13-bit address. The upper six bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

4.3.2 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 4-3.

TABLE 4-3: CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 11											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
58Ch	Ch NCO1ACCL NCO1ACC<7:0>									0000 0000	0000 0000
58Dh	NCO1ACCH				NCO1AC	C<15:8>				0000 0000	0000 0000
58Eh	NCO1ACCU	_	_	—	_		NCO1	ACC<19:16>		0000	0000
58Fh	NCO1INCL				NCO1IN	C<7:0>				0000 0001	0000 0001
590h	NCO1INCH				NCO1INC	C<15:8>				0000 0000	0000 0000
591h	NCO1INCU	_	_	_			NCO1INC<19:16>				0000
592h	NCO1CON	N1EN	_	N1OUT	N1POL	_	_	_	N1PFM	0-000	0-000
593h	NCO1CLK		N1PWS<2:0>		_	—		N1CKS<2:0>	>	000000	000000
594h	—				Unimpler	nented					
595h	—				Unimpler	mented					
596h	—				Unimpler	mented					
597h	—				Unimpler	mented					
598h	—				Unimpler	mented					
599h	—		Unimplemented								
59Ah	—				Unimpler	mented					
59Bh	—	Unimplemented									
59Ch	9Ch TMR0L Holding Register for the Least Significant Byte of the 16-bit TMR0 Register							0000 0000	0000 0000		
59Dh	TMR0H	Holding Register for the	he Most Significant	Byte of the 16-bit	TMR0 Register					1111 1111	1111 1111
59Eh	T0CON0	TOEN	_	T0OUT	T016BIT		TOOL	JTPS<3:0>		0-00 0000	0-00 0000
59Fh	T0CON1		T0CS<2:0>		TOASYNC		TOC	KPS<3:0>		0000 0000	0000 0000

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	r specifics				
1F0Ch	_				Unimple	mented					
1F0Dh	_	Unimplemented									
1F0Eh	_	Unimplemented									
1F0Fh	_				Unimple	mented					
1F10h	RA0PPS	—	—	—			RA0PPS<4:0	>		00 0000	uu uuuu
1F11h	RA1PPS	—	—	—			RA1PPS<4:0	>		00 0000	uu uuuu
1F12h	RA2PPS	—	_	—			RA2PPS<4:0	>		00 0000	uu uuuu
1F13h	RA3PPS	—	_	—			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	-	-	—			RA4PPS<4:0	>		00 0000	uu uuuu
1F15h	RA5PPS	—	_	_			RA5PPS<4:0	>		00 0000	uu uuuu
1F16h	RA6PPS	—	_	_		RA6PPS<4:0>					uu uuuu
1F17h	RA7PPS	_	_	_		RA7PPS<4:0>					uu uuuu
1F18h	RB0PPS	_	_	_		RB0PPS<4:0>					uu uuuu
1F19h	RB1PPS	_	_	_		RB1PPS<4:0>					uu uuuu
1F1Ah	RB2PPS	_	_	_			RB2PPS<4:0	>		00 0000	uu uuuu
1F1Bh	RB3PPS	_	_	_			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	_	_	_			RB4PPS<4:0	>		00 0000	uu uuuu
1F1Dh	RB5PPS	_	_	_			RB5PPS<4:0	>		00 0000	uu uuuu
1F1Eh	RB6PPS	_	_	_			RB6PPS<4:0	>		00 0000	uu uuuu
1F1Fh	RB7PPS	_	_	_			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	_	_	_			RC0PPS<4:0	>		00 0000	uu uuuu
1F21h	RC1PPS	_	_	_			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	—	_	—			RC2PPS<4:0	>		00 0000	uu uuuu
1F23h	RC3PPS	—	_	—			RC3PPS<4:0	>		00 0000	uu uuuu
1F24h	RC4PPS	—	_	—			RC4PPS<4:0	>		00 0000	uu uuuu
1F25h	RC5PPS	—	_	—			RC5PPS<4:0	>		00 0000	uu uuuu
1F26h	RC6PPS	—	_	—			RC6PPS<4:0	>		00 0000	uu uuuu
1F27h	RC7PPS	—	_	—			RC7PPS<4:0	>		00 0000	uu uuuu
1F28h 	_	Unimplemented							-	_	

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15354/55

6.1 Microchip Unique identifier (MUI)

The PIC16(L)F15354/55 devices are individually encoded during final manufacturing with a Microchip Unique Identifier, or MUI. The MUI cannot be erased by a Bulk Erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a required. It may also be used by the application manufacturer for a number of functions that require unverified unique identification, such as:

- Tracking the device
- Unique serial number

The MUI consists of nine program words. When taken together, these fields form a unique identifier. The MUI is stored in nine read-only locations, located between 8100h to 8109h in the DIA space. Table 6-1 lists the addresses of the identifier words.

Note:	For applications that require verified unique
	identification, contact your Microchip Tech-
	nology sales office to create a Serialized
	Quick Turn Programming option.

6.2 External Unique Identifier (EUI)

The EUI data is stored at locations 810Ah to 8111h in the program memory region. This region is an optional space for placing application specific information. The data is coded per customer requirements during manufacturing. The EUI cannot be erased by a Bulk erase command.

Note: Data is stored in this address range on receiving a request from the customer. The customer may contact the local sales representative, or Field Applications Engineer, and provide them the unique identifier information that is required to be stored in this region.

6.3 Analog-to-Digital Conversion Data of the Temperature Sensor

The purpose of the temperature sensor module is to provide a temperature-dependent voltage that can be measured by an analog module. **Section 19.0 "Temperature Indicator Module**" explains the operation of the Temperature Indicator module and defines terms such as the low range and high range settings of the sensor.

The DIA table contains the internal ADC measurement values of the temperature sensor for low and high range at fixed points of reference. The values are measured during test and are unique to each device. The right-justified ADC readings are stored in the DIA memory region. The calibration data can be used to plot the approximate sensor output voltage, VTSENSE vs. Temperature curve without having to make calibration measurements in the application.

- **TSLR<3:1>**: Address 8112h to 8114h store the measurements for the low range setting of the temperature sensor at VDD = 3V.
- TSHR<3:1>: Address 8115h to 8117h store the measurements for the high range setting of the temperature sensor at VDD = 3V.

The stored measurements are made by the device ADC using the internal VREF = 2.048V.

6.4 Fixed Voltage Reference Data

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter

For more information on the FVR, refer to **Section 18.0 "Fixed Voltage Reference (FVR)"**.

The DIA stores measured FVR voltages for this device in mV for the different buffer settings of 1x, 2x or 4x at program memory locations 8118h to 811Dh.

- FVRA1X stores the value of ADC FVR1 Output voltage for 1x setting (in mV)
- FVRA2X stores the value of ADC FVR1 Output Voltage for 2x setting (in mV)
- FVRA4X stores the value of ADC FVR1 Output Voltage for 4x setting (in mV)
- FVRC1X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC2X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC4X stores the value of Comparator FVR2 output voltage for 4x setting (in mV)

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0	
_	_	TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable b	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is s	set	'0' = Bit is clea	red	HS= Hardwa	re Set			
bit 7-6	Unimpleme	nted: Read as '0	,					
bit 5	5 TMR0IF: Timer0 Overflow Interrupt Flag bit							
		register has over register did not		st be cleared in	software)			
bit 4	IOCIF: Interr	rupt-on-Change I	nterrupt Flag	g bit (read-only)	(2)			
	1 = One or	more of the IOC	AF-IOCEF re	egister bits are o	currently set, ind	icating an enal	bled edge was	
		ed by the IOC mo						
		of the IOCAF-IOC	-	bits are current	ly set			
bit 3-1		nted: Read as '0						
bit 0		xternal Interrupt	-					
		T external interru T external interru			ed in software)			
N								
	The External Inter	• •			,		9	
	The IOCIF bit is the application firmware application for the second sec						nag,	

REGISTER 10-10: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

	• • • • • • • • • • • •			INEQUEU					
U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0		
_	_	NVMIF	NCO1IF	_	_		CWG1IF		
bit 7	·						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	ire set				
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5	NVMIF: Nonv	olatile Memory	(NVM) Interru	upt Flag bit					
	•	ested NVM ope		npleted					
		rupt not assert							
bit 4		nerically Contro		r (NCO) Interru	ıpt Flag bit				
		has rolled ove	-						
		nterrupt event							
bit 3-1	Unimplemen	ted: Read as '	0'						
bit 0	CWG1IF: CW	CWG1IF: CWG1 Interrupt Flag bit							
	1 = CWG1 has gone into shutdown								
	0 = CWG1 is	operating norm	nally, or interru	ipt cleared					

REGISTER 10-17: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

Note:	Interrupt flag bits are set when an interrupt								
	condition occurs, regardless of the state of								
	its corresponding enable bit or the Global								
	Enable bit, GIE, of the INTCON register.								
	User software should ensure the								
	appropriate interrupt flag bits are clear								
	prior to enabling an interrupt.								

14.0 I/O PORTS

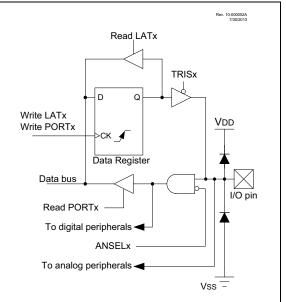
TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	PORTE
PIC16(L)F15354/55	٠	٠	٠	٠

Each port has ten standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
bit 7							bit 0
l egend:							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ODCC<7:0>: PORTC Open-Drain Enable bits

For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 14-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits

For RC<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLC7 | INLVLC6 | INLVLC5 | INLVLC4 | INLVLC3 | INLVLC2 | INLVLC1 | INLVLC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits

For RC<7:0> pins, respectively

 $\ensuremath{\mathtt{1}}$ = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3 | IOCBP2 | IOCBP1 | IOCBP0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

-0 **IOCBP<7:0>:** Interrupt-on-Change PORTB Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

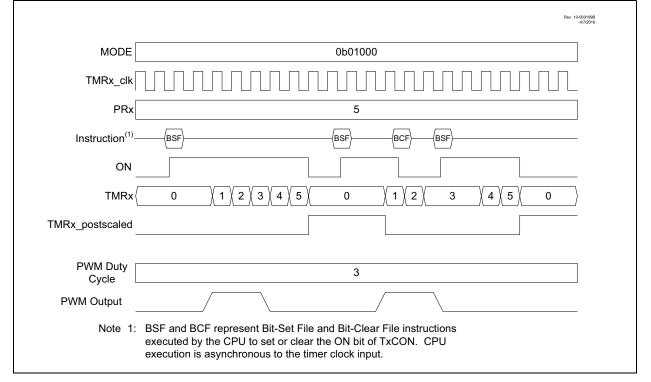
bit 7-0

IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.

0 = No change was detected, or the user cleared the detected change.


FIGURE 26-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMRxGE	
TxGPOL	
TxGSPM	
TxGTM	
TxGGO/ Cleared by hardware DONE Counting enabled on	on .L
selected gate source	
TxGVAL	
TMRxH:TMRxL N Count N + 1 N + 2 N + 3	
TMRxGIF Cleared by software falling edge of TxGVAL Software software	1

27.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

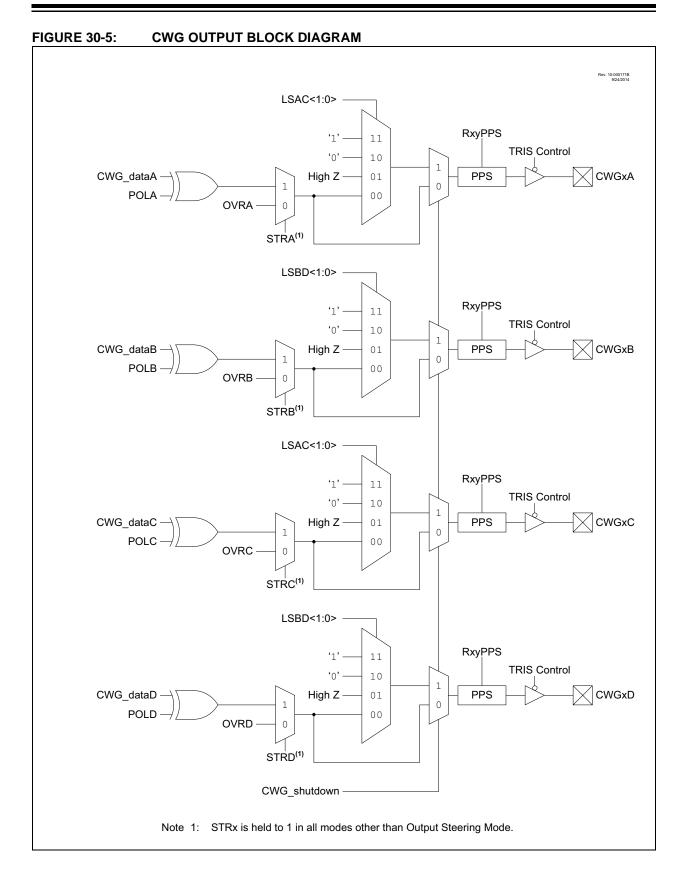
REGISTER 29-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PWMx	DC<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkno	wn	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clear	ed				

bit 7-0 **PWMxDC<9:2>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 29-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxDC<	<1:0>	—	—	—	—	—	—
bit 7							bit 0

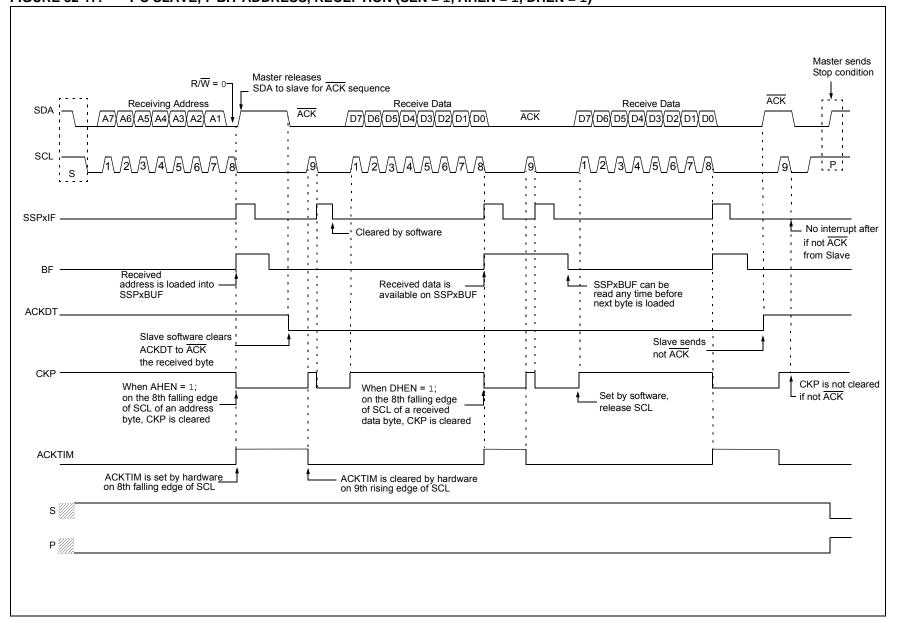

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **PWMxDC<1:0>:** PWM Duty Cycle Least Significant bits

These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

PIC16(L)F15354/55



U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		IN	_	POLD	POLC	POLB	POLA
bit 7		•		· ·		•	bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7-6	Unimpleme	ented: Read as '	0'				
bit 5	-	put Value bit					
bit 4	Unimpleme	ented: Read as '	0'				
bit 3	POLD: CW	G1D Output Pola	arity bit				
	0	output is inverted output is normal					
bit 2	POLC: CW	G1C Output Pola	arity bit				
	0	output is inverted output is normal					
bit 1	POLB: CW	G1B Output Pola	rity bit				
		output is inverted output is normal					
bit 0	POLA: CW	G1A Output Pola	rity bit				
	0	output is inverted output is normal					

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—			LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		CxOUT Output	5				
		ut of the logic o					
bit 6-4	•	ut of the logic o		nea			
	-	ted: Read as '					
bit 3		Gate 3 Output I	•				
		ut of gate 3 is i ut of gate 3 is r		applied to the	logic cell		
bit 2	•	•		rol bit			
	LCxG3POL: Gate 2 Output Polarity Control bit 1 = The output of gate 2 is inverted when applied to the logic cell						
	0 = The output of gate 2 is not inverted						
bit 1	LCxG2POL: Gate 1 Output Polarity Control bit						
	 1 = The output of gate 1 is inverted when applied to the logic cell 0 = The output of gate 1 is not inverted 						
bit 0	LCxG1POL:	Gate 0 Output I	Polarity Conti	rol bit			
	 LCxG1POL: Gate 0 Output Polarity Control bit 1 = The output of gate 0 is inverted when applied to the logic cell 0 = The output of gate 0 is not inverted 						

REGISTER 31-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

FIGURE 32-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

Preliminary

PIC16(L)F15354/55

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7				•			bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set		
bit 7	1 = Enable in				or 00h) is receiv	ed in the SSPx	SR	
bit 6	1 = Acknowle	cknowledge St dge was not re dge was recei		mode only)				
bit 5	<u>In Receive m</u> Value transmi	ACKDT: Acknowledge Data bit (in I ² C mode only) <u>In Receive mode:</u> Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge						
bit 4	<u>In Master Rec</u> 1 = Initiate <i>A</i>	 ACKEN: Acknowledge Sequence Enable bit (in I²C Master mode only) <u>In Master Receive mode:</u> 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data Automatically cleared by hardware. 						
bit 3	RCEN: Recei	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C						
bit 2	PEN: Stop Co SCKMSSP R 1 = Initiate Sto	 PEN: Stop Condition Enable bit (in I²C Master mode only) <u>SCKMSSP Release Control:</u> 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle 						
bit 1	RSEN: Repea 1 = Initiate R	 Stop containing the RSEN: Repeated Start Condition Enable bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 						
bit 0	In Master mod 1 = Initiate Sta 0 = Start cond In Slave mode	 SEN: Start Condition Enable/Stretch Enable bit <u>In Master mode:</u> 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle <u>In Slave mode:</u> 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 						
Note 1:	0 = Clock stre For bits ACKEN, R	etching is disat		he l ² C module	is not in the IDI	E mode this h	it may not be	

REGISTER 32-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description				
PC	Program Counter				
TO	Time-Out bit				
С	Carry bit				
DC	Digit Carry bit				
Z	Zero bit				
PD	Power-Down bit				