

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F15354/55

TABLE 2: PACKAGES

Device	(S)PDIP	SOIC	SSOP	UQFN (4x4)	UQFN (6x6)
PIC16(L)F15354	•	•	•	•	•
PIC16(L)F15355	•	•	•	•	•

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCA0	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator 1 negative input.
	C2IN0-	AN	_	Comparator 2 negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ / IOCA1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCAT	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	_	Comparator 1 negative input.
	C2IN1-	AN	-	Comparator 2 negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/VREF-/ DAC1OUT1/IOCA2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUTINOCAZ	ANA2	AN	-	ADC Channel A2 input.
	C1IN0+	AN	I	Comparator 2 positive input.
	C2IN0+	AN	-	Comparator 2 positive input.
	DAC1OUT1	—	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	-	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/IOCA3/ DAC1REF+	RA3	TTL/ST	CMOS/OD	General purpose I/O.
DAGIREFT	ANA3	AN	-	ADC Channel A3 input.
	C1IN1+	AN	I	Comparator 1 positive input.
	VREF+	AN	I	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	-	Interrupt-on-change input.
	DAC1REF+	TTL/ST	AN	DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	тоскі ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.

TABLE 1-2: PIC16(L)F15354/55 PINOUT DESCRIPTION

Legend:AN= Analog input or output
TTLCMOS= CMOS compatible input or output
STOD= Open-Drain
I^2CHV= High VoltageXTAL= Crystal levelsI2C= Schmitt Trigger input with I2C

Note 1

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-2 for details on which PORT pins may be used for this signal.
 All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin

 All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTX pin options as described in Table 15-3.
 The several PORTX pin the several port of the several port

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	r specifics				
1F0Ch	_				Unimple	mented					
1F0Dh	_				Unimple	mented					
1F0Eh	_				Unimple	mented					
1F0Fh	_				Unimple	mented					
1F10h	RA0PPS	—	—	—			RA0PPS<4:0	>		00 0000	uu uuuu
1F11h	RA1PPS	—	—	—			RA1PPS<4:0	>		00 0000	uu uuuu
1F12h	RA2PPS	—	_	—			RA2PPS<4:0	>		00 0000	uu uuuu
1F13h	RA3PPS	—	_	—			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	-	-	—			RA4PPS<4:0	>		00 0000	uu uuuu
1F15h	RA5PPS	—	_	_			RA5PPS<4:0	>		00 0000	uu uuuu
1F16h	RA6PPS	—	_	_			RA6PPS<4:0	>		00 0000	uu uuuu
1F17h	RA7PPS	_	_	_			RA7PPS<4:0	>		00 0000	uu uuuu
1F18h	RB0PPS	_	_	_			RB0PPS<4:0	>		00 0000	uu uuuu
1F19h	RB1PPS	_	_	_			RB1PPS<4:0	>		00 0000	uu uuuu
1F1Ah	RB2PPS	_	_	_			RB2PPS<4:0	>		00 0000	uu uuuu
1F1Bh	RB3PPS	_	_	_			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	_	_	_			RB4PPS<4:0	>		00 0000	uu uuuu
1F1Dh	RB5PPS	_	_	_			RB5PPS<4:0	>		00 0000	uu uuuu
1F1Eh	RB6PPS	_	_	_			RB6PPS<4:0	>		00 0000	uu uuuu
1F1Fh	RB7PPS	_	_	_			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	_	_	_			RC0PPS<4:0	>		00 0000	uu uuuu
1F21h	RC1PPS	_	_	_			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	—	_	—			RC2PPS<4:0	>		00 0000	uu uuuu
1F23h	RC3PPS	—	_	—			RC3PPS<4:0	>		00 0000	uu uuuu
1F24h	RC4PPS	—	_	—	RC4PPS<4:0>			00 0000	uu uuuu		
1F25h	RC5PPS	—	_	—	RC5PPS<4:0>			00 0000	uu uuuu		
1F26h	RC6PPS	—	_	—	RC6PPS<4:0> -				00 0000	uu uuuu	
1F27h	RC7PPS	—	_	—			RC7PPS<4:0	>		00 0000	uu uuuu
1F28h 	_		Unimplemented —						_		

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

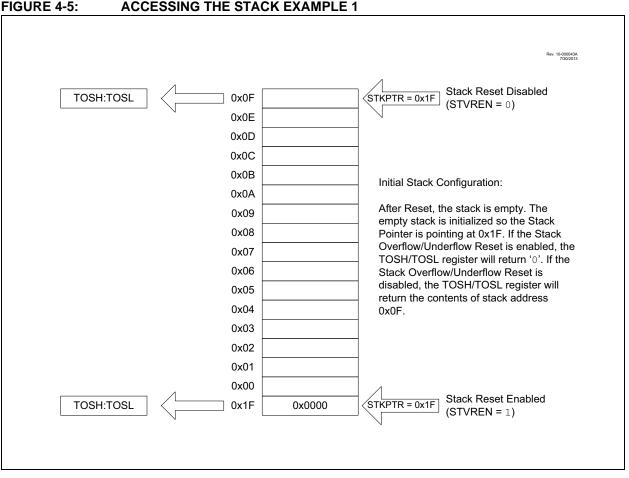
PIC16(L)F15354/55

4.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-5 through Figure 4-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

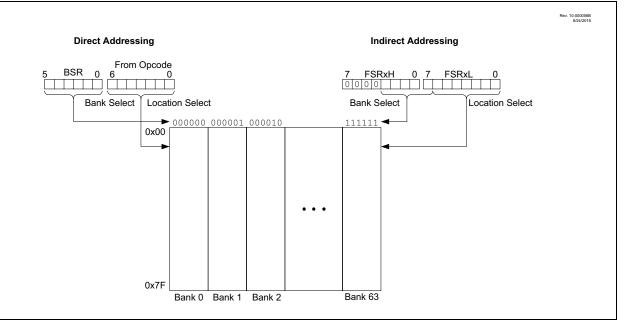
Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.


4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.


Reference Figure 4-5 through Figure 4-8 for examples of accessing the stack.

4.6.1 TRADITIONAL/BANKED DATA MEMORY

The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

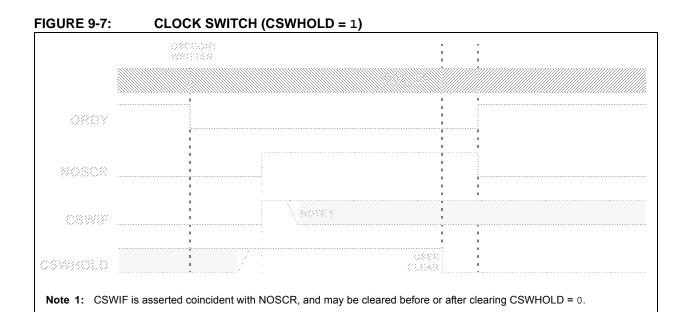
FIGURE 4-11: TRADITIONAL/BANKED DATA MEMORY MAP

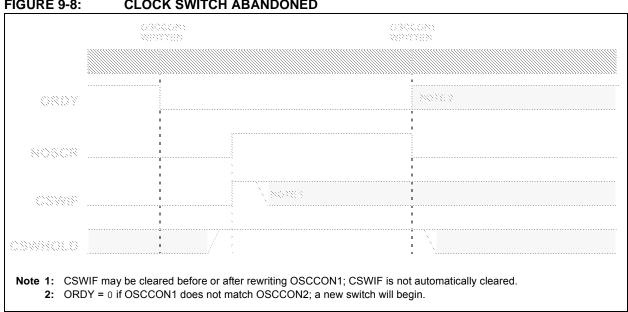
REGIST	ER 5-7:	REVIS	REVISIONID: REVISION ID REGISTER										
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0	MJRREV<5:0>						MNRREV<5:0>					
bit 13													bit 0
Legend:													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bit	is set		x = Bit	is unkno	own		

bit 13-12 **Fixed Value**: Read-only bits These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.

© 2016 Microchip Technology Inc.


8.15 Register Definitions: Power Control


REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7	•						bit 0

Legend:					
HC = Bit is cle	ared by hardw	are	HS = Bit is set by hardware		
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is unch	anged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets		
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition		
bit 7	1 = A Stack	ack Overflow Flag bit Overflow occurred Overflow has not occurre	ed or cleared by firmware		
bit 6	STKUNF: Stack	ack Underflow Flag bit Underflow occurred	red or cleared by firmware		
 bit 5 WDTWV: WDT Window Violation Flag bit 1 = A WDT Window Violation Reset has not occurred or set to '1' by firmware 0 = A WDT Window Violation Reset has occurred (a CLRWDT instruction was executed eith arming the window or outside the window (cleared by hardware) 					
bit 4	1 = A Watch		it occurred or set to '1' by firmware urred (cleared by hardware)		
bit 3	1 = A MCLR	CLR Reset Flag bit Reset has not occurred o Reset has occurred (clea			
bit 2	1 = A reset		executed or set to '1' by firmware ecuted (cleared by hardware)		
bit 1	bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)				
bit 0 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out R occurs)					

PIC16(L)F15354/55

FIGURE 9-8: CLOCK SWITCH ABANDONED

9.5 Register Definitions: Oscillator Control

REGISTER 9-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—	1	NOSC<2:0> ^{(2,3}	3)		NDIV<3	:0> (2,3,4)	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7 Unimplemented: Read as '0'

 bit 6-4
 NOSC<2:0>: New Oscillator Source Request bits

 The setting requests a source oscillator and PLL combination per Table 9-1.

 POR value = RSTOSC (Register 5-1).

 bit 3-0

 NDIV<3:0>: New Divider Selection Request bits

The setting determines the new postscaler division ratio per Table 9-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 9-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 9-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾						
—		COSC<2:0>			CDIV	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '0'

bit 6-4 COSC<2:0>: Current Oscillator Source Select bits (read-only)

Indicates the current source oscillator and PLL combination per Table 9-1.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 9-1.

Note 1: The POR value is the value present when user code execution begins.

2: The Reset value (n/n) is the same as the NOSC/NDIV bits.

14.0 I/O PORTS

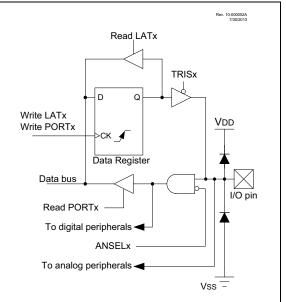
TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	PORTE
PIC16(L)F15354/55	٠	٠	٠	٠

Each port has ten standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
PPSLOCK	_	—	—	_	—	_	—	PPSLOCKED	197	
INTPPS	_	_			INT	PPS<5:0>			196	
TOCKIPPS	_	_			TOCK	(IPPS<5:0>			196	
T1CKIPPS	—	_			T1CK	(IPPS<5:0>			196	
T1GPPS	_	_			T1G	PPS<5:0>			196	
T2AINPPS					T2AII	NPPS<5:0>			196	
CCP1PPS	—	_			CCP	1PPS<5:0>			196	
CCP2PPS	_	_			CCP	2PPS<5:0>			196	
CWG1PPS	_	_			CWG	1PPS<5:0>			196	
SSP1CLKPPS	—	_			SSP1C	LKPPS<5:0	>		196	
SSP1DATPPS	—	_			SSP1D	ATPPS<5:0	>		196	
SSP1SSPPS	—	_			SSP18	SSPPS<5:0>	•		196	
SSP2CLKPPS	_	_			SSP2C	LKPPS<5:0	>		196	
SSP2DATPPS	_	_			SSP2D	ATPPS<5:0	>		196	
SSP2SSPPS	_	_			SSP28	SSPPS<5:0>	•		196	
RX1PPS	_	_			RXI	PPS<5:0>			197	
TX1PPS	_	_			TXF	PPS<5:0>			196	
CLCIN0PPS	_	_			CLCIN	10PPS<5:0>			196	
CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			196	
CLCIN2PPS	_	_			CLCIN	12PPS<5:0>			196	
CLCIN3PPS	_	_			CLCIN	13PPS<5:0>			196	
RX2PPS	_	_			RX2	PPS<5:0>			196	
TX2PPS	_	_			TX2	PPS<5:0>			196	
ADACTPPS	_	_			ADAC	TPPS<5:0>			196	
RA0PPS						RA0PPS<	4:0>		197	
RA1PPS	_	_				RA1PPS<	4:0>		197	
RA2PPS	_	_	_			RA2PPS<	4:0>		197	
RA3PPS	_	_	_			RA3PPS<	4:0>		197	
RA4PPS	_	_				RA4PPS<	4:0>		197	
RA5PPS	_	_				RA5PPS<	4:0>		197	
RA6PPS						RA6PPS<			197	
RA7PPS	_	_	—			RA7PPS<	4:0>		197	
RB0PPS	_	_	—			RB0PPS<	4:0>		197	
RB1PPS	—	_	—			RB1PPS<	4:0>		197	
RB2PPS	_	_	_			RB2PPS<	4:0>		197	
RB3PPS	_	_	_			RB3PPS<	4:0>		197	
RB4PPS	_	_	_	— RB4PPS<4:0>						
RB5PPS	_	_	_			RB5PPS<			197 197	
RB6PPS	_	_	_	— RB6PPS<4:0>						
RB7PPS	_	_	_			RB7PPS<			197 197	
RC0PPS						RC0PPS<			197	

TABLE 15-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

PIC16(L)F15354/55

REGISTER 23-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		NCH<2:0>	
bit 7							bit 0
l egend:							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Negative Input Channel Select bits
	111 = CxVN connects to AVss
	110 = CxVN connects to FVR Buffer 2
	101 = CxVN unconnected
	100 = CxVN unconnected
	011 = CxVN connects to CxIN3- pin
	010 = CxVN connects to CxIN2- pin
	001 = CxVN connects to CxIN1- pin
	000 = CxVN connects to CxIN0- pin

REGISTER 23-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	_	_	_		PCH<2:0>	
bit 7	•						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 5-3 PCH<2:0>: Comparator Positive Input Channel Select bits

- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin

Marila	MODE	<4:0>	Output	Onenetien	Timer Control			
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 27-4) ON = 1		_	ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1	
Free	0.0	011		Rising or falling edge Reset		TMRx_ers		
Running Period	00	100	Period	Rising edge Reset (Figure 27-6)		TMRx_ers ↑	ON = 0	
		101	Pulse	Falling edge Reset		TMRx_ers ↓		
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Reset	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 27-8)	ON = 1	_		
		001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑	_		
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or Next clock	
One-shot	01 100	100	Edge	Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx	
		101	triggered start and	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers \downarrow	(Note 2)	
		110	hardware Reset	Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0		
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	rved			
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or	
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)	
Reserved	10	100		Rese	rved			
Reserved		101		Rese	rved			
		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset	
Reserved	11	xxx Reserved						

TABLE 27-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

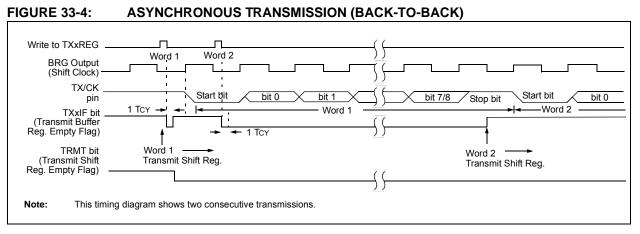

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	—	—	_	—	INTEDG	119
PIR4	—	_	_	_	—	_	TMR2IF	TMR1IF	132
PIE4	—	—	_	_	_	_	TMR2IE	TMR1IE	124
CCP1CON	EN	—	OUT	FMT		MODE	=<3:0>		317
CCP1CAP	_						CTS<2:0>		319
CCPR1L	Capture/Con	npare/PWM F	Register 1 (LS	B)					319
CCPR1H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					320
CCP2CON	EN	—	OUT	FMT		MODE	=<3:0>		317
CCP2CAP	_	_	_	_	_		CTS<2:0>		319
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LS	B)					319
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					319
CCPTMRS0	_	_	_	_	C2TSE	L<1:0>	C1TSE	L<1:0>	320
CCPTMRS1	_	_	_	_	P2TSE	L<1:0>	C1TSE	L<1:0>	321
CCP1PPS	_	_			CCP1PI	PS<5:0>			196
CCP2PPS	_	_			CCP2PI	PS<5:0>			196
RxyPPS	—	—	—			RxyPPS<4:0>	>		197
ADACT	—	—	_	—		ADAC	T<3:0>		231
CLCxSELy	_	—	_			LCxDyS<4:0>	>		363
CWG1ISM	—	—	_	—		IS<	3:0>		352

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	119
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	133
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	_	_	_	TMR1GIE	125
CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	361
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	362
CLC1SEL0	_	_			LC1D	1S<5:0>	1	1	363
CLC1SEL1	_				LC1D	2S<5:0>			363
CLC1SEL2	_	_			LC1D	3S<5:0>			363
CLC1SEL3	_	_			LC1D	4S<5:0>			363
CLC1GLS0	_	_	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	364
CLC1GLS1	_	_	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	365
CLC1GLS2	_	_	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	366
CLC1GLS3	_	_	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	367
CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0	>	361
CLC2POL	LC2POL	_	_	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	362
CLC2SEL0	_	_		L	LC2D	1S<5:0>			363
CLC2SEL1	_	_			LC2D	2S<5:0>			363
CLC2SEL2	_	_			LC2D	3S<5:0>			363
CLC2SEL3	_	_			LC2D	4S<5:0>			363
CLC2GLS0	_	_	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	364
CLC2GLS1	—	_	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	365
CLC2GLS2	—	_	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	366
CLC2GLS3	_	_	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	367
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0	>	361
CLC3POL	LC3POL	_	_	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	362
CLC3SEL0	—	_			LC3D	1S<5:0>			363
CLC3SEL1	_	_			LC3D	2S<5:0>			363
CLC3SEL2	_	_			LC3D	3S<5:0>			363
CLC3SEL3	—	_			LC3D	4S<5:0>			363
CLC3GLS0	_	_	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	364
CLC3GLS1	_	_	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	365
CLC3GLS2	_	_	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	366
CLC3GLS3	_	_	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	367
CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>	>	361
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	362
CLC4SEL0	_	_			LC4D	1S<5:0>		1	363
CLC4SEL1	_	_			LC4D	2S<5:0>			363
CLC4SEL2	_	_			LC4D	3S<5:0>			363
CLC4SEL3	_	_			LC4D	4S<5:0>			363
CLC4GLS0	_	_	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	364

33.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.

36.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

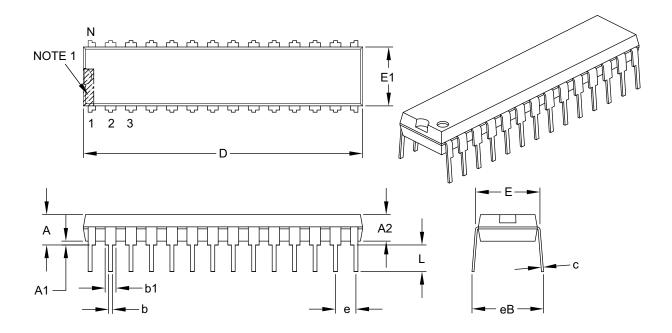
ADDLW	Add literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.			

wrap-around.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.


ADDWFC ADD W and CARRY bit to f

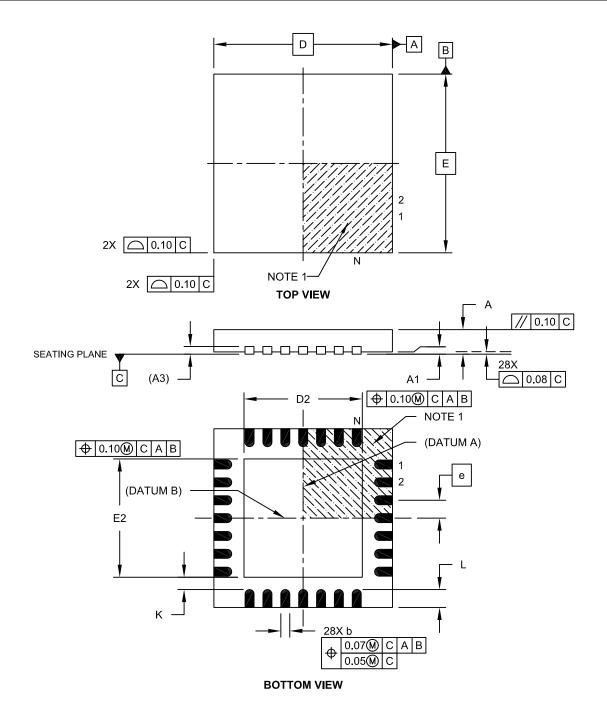
Syntax:	[<i>label</i>] ADDWFC f {,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(W) + (f) + (C) \rightarrow dest$			
Status Affected:	C, DC, Z			
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.			

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2