

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH PIC16(L)F15354/55 MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC16(L)F15354/55 family of 8bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

			KLOISTER		DANNO U-			1				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 11									•	•		
						and Table 4.0 for						
58Ch	NCO1ACCL				NCO1AC	C<7:0>				0000 0000	0000 0000	
58Dh	NCO1ACCH				NCO1AC	C<15:8>				0000 0000	0000 0000	
58Eh	NCO1ACCU	—	—		_		NCO1A		0000	0000		
58Fh	NCO1INCL NCO1INC<7:0>									0000 0001	0000 0001	
590h	NCO1INCH				NCO1INC	C<15:8>			0000 0000	0000 0000		
591h	NCO1INCU	—	—	—	—		NCO1I	NC<19:16>		0000	0000	
592h	NCO1CON	N1EN	—	N1OUT	N1POL	—	—	—	N1PFM	0-000	0-000	
593h	NCO1CLK	1	N1PWS<2:0>		—	—		N1CKS<2:0	>	000000	000000	
594h	_				Unimpler	mented						
595h	_				Unimpler	mented						
596h	_				Unimpler	mented						
597h	_				Unimpler	mented						
598h	_				Unimpler	mented						
599h	_				Unimpler	mented						
59Ah	_				Unimpler	mented						
59Bh	_				Unimpler	mented						
59Ch	TMR0L	Holding Register for th	ne Least Significant	t Byte of the 16-bi	t TMR0 Register					0000 0000	0000 0000	
59Dh	TMR0H	Holding Register for th	ne Most Significant	Byte of the 16-bit	TMR0 Register					1111 1111	1111 1111	
59Eh	T0CON0	T0EN	—	TOOUT	T016BIT		TOOU	TPS<3:0>		0-00 0000	0-00 0000	
59Fh	T0CON1		T0CS<2:0>		T0ASYNC		TOCH	(PS<3:0>		0000 0000	0000 0000	

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

			REGIOTEIX		B/ (11100 0		020,	1	1	1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 16		•	•							•	
	GPU GORE REGISTERS, see Table 4-3 for specifics										
80Ch	WDTCON0	—	—			WDTPS<4:0>			SWDTEN	dd ddd0	dd dddo
80Dh	WDTCON1	—		WDTCS<2:0> — WINDOW<2:0>						-वेर्वेवे -वेर्वेवे	-বর্বব -বর্বব
80Eh	WDTPSL		PSCNT<7:0>							0000 0000	0000 0000
80Fh	WDTPSH		PSCNT<15:8>							0000 0000	0000 0000
810h	WDTTMR	—		WDTTMR<3:0> STATE PSCNT17 PSCNT16					xxxx x000	xxxx x000	
811h	BORCON	SBOREN	_			—	—	—	BORRDY	1 q	uu
812h	VREGCON		_	— — — VREGPM ⁽¹⁾ —			0-	0-			
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 110q	qqqq qquu
814h	PCON1		_			—	—	MEMV		1-	u-
815h	—				Unimpler	nented					
816h	—				Unimpler	nented					
817h	—				Unimpler	nented					
818h	—				Unimpler	nented					
819h	—				Unimpler	nented					
81Ah	NVMADRL				NVMAD	R<7:0>				xxxx xxxx	uuuu uuuu
81Bh	NVMADRH					NVMADR<14:8	}>			-xxx xxxx	-uuu uuuu
81Ch	NVMDATL				NVMDA	Γ<7:0>				0000 0000	0000 0000
81Dh	NVMDATH		_			NVME	AT<13:8>			00 0000	00 0000
81Eh	NVMCON1		NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000
81Fh	NVMCON2				NVMCON	2<7:0>				XXXX XXXX	uuuu uuuu

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Present only on PIC16F15354/55.

REGIST	ER 5-7:	REVIS	SIONID): REVIS	SION ID	REGIS	STER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0	MJRREV<5:0> MNRREV<5:0>						MNRREV<5:0>					
bit 13								bit C					bit 0
Legend:													
	R = Reada	able bit											
	'0' = Bit is	cleared				'1' = Bit	t is set		x = Bit	is unkno	own		

bit 13-12 **Fixed Value**: Read-only bits These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.

© 2016 Microchip Technology Inc.

9.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase Lock Loop (PLL) that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce a range from 1 to 32 MHz. The Low-Frequency Internal Oscillator (LFINTOSC) generates a 31 kHz frequency. The external oscillator block can also be used with the PLL. See **Section 9.2.1.4 "4x PLL"** for more details.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 9.3** "**Clock Switching**" for additional information.

9.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset
- Write the NOSC<2:0> and NDIV<4:0> bits in the OSCCON1 register to switch the system clock source

See **Section 9.3** "Clock Switching" for more information.

9.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 9-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, 0-32 MHz
- ECM Medium power, 0-8 MHz
- ECL Low power, 0-0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

9.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 9-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive crystals and resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 9-3 and Figure 9-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 9-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 9-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

9.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), Brown-out Reset (BOR) or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

9.5 Register Definitions: Oscillator Control

REGISTER 9-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q	
—	NOSC<2:0> ^(2,3)			NDIV<3:0> ^(2,3,4)				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7 Unimplemented: Read as '0'

 bit 6-4
 NOSC<2:0>: New Oscillator Source Request bits

 The setting requests a source oscillator and PLL combination per Table 9-1.

 POR value = RSTOSC (Register 5-1).

 bit 3-0

 NDIV<3:0>: New Divider Selection Request bits

The setting determines the new postscaler division ratio per Table 9-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 9-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 9-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾						
_		COSC<2:0>			CDIV	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '0'

bit 6-4 COSC<2:0>: Current Oscillator Source Select bits (read-only)

Indicates the current source oscillator and PLL combination per Table 9-1.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 9-1.

Note 1: The POR value is the value present when user code execution begins.

2: The Reset value (n/n) is the same as the NOSC/NDIV bits.

FIGURE 10-2:	INTERRUPT LA	TENCY									
						Rev. 10-030269E 8/31/2016					
	$OSC1 \wedge \wedge$										
INT pin Valid Interrupt window ⁽¹⁾ 1 Cycle Instruction at PC											
Fetch PC -	1 PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006					
Execute PC -	21 PC - 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005					
Indeterminate Latency Latency											
Note 1: An interru 2: Since an	upt may occur at any t interrupt may occur a	ime during the in ny time during th	terrupt window. le interrupt wind	ow, the actual lat	ency can vary.						

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4
OSC1					
	(4)				
INT pin		. (1)	1	1	<u> </u>
INTF	, (1) (5)		Interrupt Latency (2)	- - - - - - -	
GIE				· · · · · · · · · · · · · · · · · · ·	
INSTRUCTION	 I FLOW			<u>-</u>	$\frac{1}{1}$
PC	C PC	PC + 1	PC + 1	0004h	X0005h
Instruction (Fetched	Inst (PC)	Inst (PC + 1)	-	Inst (0004h)	Inst (0005h)
Instruction (Executed	Inst (PC – 1)	Inst (PC)	Forced NOP	Forced NOP	Inst (0004h)
Note 1: IN	NTF flag is sampled here	e (every Q1).			
2: A	synchronous interrupt la atency is the same whe	atency = 3-5 Tcy. Syn her Inst (PC) is a sing	nchronous latency = 3 gle cycle or a 2-cycle in	3-4 TCY, where TCY =	instruction cycle time.
3: F	or minimum width of IN	pulse, refer to AC sp	ecifications in Section	n 37.0 "Electrical Spe	ecifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	
bit 7					·		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7 bit 6	RC2IE: USAF 1 = Enables f 0 = Enables f TX2IE: USAR 1 = Enables f 0 = Disables	RT Receive Inte the USART rec the USART rec RT Transmit Inte the USART tra the USART tra	errupt Enable eive interrupt eive interrupt errupt Enable nsmit interrup	bit bit t				
bit 5	RC1IE: USAF 1 = Enables 1 0 = Enables 1	T Receive Inte the USART rec the USART rec	errupt Enable eive interrupt eive interrupt	bit				
bit 4	TX1IE: USAR 1 = Enables 1 0 = Disables	T Transmit Inte the USART tra the USART tra	errupt Enable nsmit interrup Insmit interrup	bit t ot				
bit 3	BCL2IE: MSS 1 = MSSP bu 0 = MSSP bu	SP2 Bus Collisi us Collision inte us Collision inte	on Interrupt E errupt enabled errupt disabled	inable bit I d				
bit 2	SSP2IE: Synd 1 = MSSP bu 0 = Disables	chronous Seria us collision Inte the MSSP Inte	l Port (MSSP: rrupt rrupt	2) Interrupt En	able bit			
bit 1	BCL1IE: MSSP1 Bus Collision Interrupt Enable bit 1 = MSSP bus collision interrupt enabled 0 = MSSP bus collision interrupt disabled							
bit 0	SSP1IE: Synd 1 = Enables 0 = Disables	chronous Seria the MSSP inter the MSSP inte	l Port (MSSP rupt rrupt	1) Interrupt Ena	able bit			
Note: Bit	PEIE of the IN	TCON register	must he					

REGISTER 10-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by PIE1-PIE7.

14.0 I/O PORTS

TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	PORTE
PIC16(L)F15354/55	•	•	٠	•

Each port has ten standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

14.5 Register Definitions: PORTB

REGISTER 14-9: PORTB: PORTB REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RB<7:0>**: PORTB I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. The actual I/O pin values are read from the PORTB register.

REGISTER 14-10: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

- 1 = PORTB pin configured as an input (tri-stated)
- 0 = PORTB pin configured as an output

14.7 Register Definitions: PORTC

REGISTER 14-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. The actual I/O pin values are read from the PORTC register.

REGISTER 14-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 14-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register returns actual I/O pin values.

FIGURE 26-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMRxGE	
TxGPOL	
TxGSPM	
TxGTM	
TxGGO/ Cleared by hardware DONE Counting enabled on	on .L
selected gate source	
TxGVAL	
TMRxH:TMRxL N Count N + 1 N + 2 N + 3	
TMRxGIF Cleared by software falling edge of TxGVAL Software software	1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7		·		·		·	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value der	pends on condit	ion	
bit 7	OVRD: Steer	ing Data D bit					
bit 6	OVRC: Steer	ing Data C bit					
bit 5	OVRB: Steer	ing Data B bit					
bit 4	OVRA: Steer	ing Data A bit					
bit 3	STRD: Steeri	ing Enable D bi	t ⁽²⁾				
	1 = CWG1D	output has the	CWG1_data	waveform with	polarity control	from POLD bit	
1.11.0	0 = CWG1D	output is assig	ned the value	of OVRD bit			
DIT 2	SIRC: Steeri	ing Enable C bi					
	1 = CWG1C 0 = CWG1C	output has the	ned the value	of OVRC bit	polarity control	from POLC bit	
bit 1	STRB: Steeri	ing Enable B bi	t(2)				
	1 = CWG1B	output has the	CWG1 data	waveform with	polarity control	from POLB bit	
	0 = CWG1B	output is assign	ned the value	of OVRB bit			
bit 0	STRA: Steeri	ing Enable A bi	t(2)				
	1 = CWG1A	output has the	CWG1_data	waveform with	polarity control	from POLA bit	
	0 = CWG1A	output is assig	ned the value	of OVRA bit			
Note 1: Th	ne bits in this re	gister apply onl	y when MOD	E<2:0> = 00x.			

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

31.7 Register Definitions: CLC Control

REGISTER 31-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LCxEN	—	LCxOUT	LCxINTP	LCxINTN	L	CxMODE<2:0>	>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it			
	1 = Configura	able logic cell i	s enabled and	mixing input si	ignals		
	0 = Configura	able logic cell i	s disabled and	l has logic zero	output		
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Ou	utput bit			
	Read-only: lo	gic cell output	data, after LCI	POL; sampled f	from CLCxOU1	Г	
bit 4	LCxINTP: Co	nfigurable Log	ic Cell Positive	e Edge Going I	nterrupt Enable	e bit	
	1 = CLCxIF v	vill be set when	n a rising edge	e occurs on CL	CxOUT		
		vill not be set				1. 1.9	
DIT 3		onfigurable Log	ic Cell Negativ	ve Eage Going		ie dit	
	1 = CLCXIFV 0 = CLCXIFV	vill be set wher vill not be set	a failing edg	e occurs on CL	CXUUT		
hit 2-0		••••••••••••••••••••••••••••••••••••••	hle I ogic Cell	Functional Mo	de hits		
5112 0	111 = Cell is	1-input transp	arent latch wit	h S and R			
	110 = Cell is	J-K flip-flop wi	th R				
	101 = Cell is	2-input D flip-f	lop with R				
	100 = Cell is	1-input D flip-f	lop with S and	IR			
	011 = Cell is	S-R latch					
	010 = Cell is	OR-XOR					
	000 = Cell is	AND-OR					

FIGURE 32-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F15354/55

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			SSPxN	/ISK<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	l as '0'		
u = Bit is unchanged x = Bit is unknow		nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared					
L								
bit 7-1	SSPxMSK<	7:1>: Mask bits						
	1 = The rec	eived address b	it n is compa	red to SSPxAD	D <n> to detect</n>	I ² C address ma	atch	
	0 = The rec	eived address b	it n is not use	ed to detect I ² C	address match			
bit 0	SSPxMSK<	0>: Mask bit for	I ² C Slave mo	ode, 10-bit Addr	ess			
I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):								
	1 = The received address bit 0 is compared to SSPxADD<0> to detect I ² C address match							
	0 = The rec	eived address b	it 0 is not use	ed to detect I ² C	address match			
	I ² C Slave mode, 7-bit address:							

REGISTER 32-5: SSPxMSK: SSPx MASK REGISTER

MSK0 bit is ignored.

REGISTER 32-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSPxAD |)D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPxADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSPxADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

PIC16(L)F15354/55

REGISTER 33-4: RCxREG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RCxRE	G<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 RCxREG<7:0>: Lower eight bits of the received data; read-only; see also RX9D (Register 33-2)

Note 1: RCxREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 33-5: TXxREG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TXxREG<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TXxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-1)

Note 1: TXxREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 33-6: SPxBRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SPxBRG<7:0>								
bit 7 bit								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SPxBRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

TABLE 37-6: THERMAL CHARACTERISTICS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions				
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package				
			80	°C/W	28-pin SOIC package				
			90	°C/W	28-pin SSOP package				
			48	°C/W	28-pin UQFN 4x4mm package				
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPQIP package				
			24	°C/W	28-pin SOIC package				
			24	°C/W	28-pin SSOP package				
			12	°C/W	28-pin UQFN 4x4mm package				
TH03	Тјмах	Maximum Junction Temperature	150	°C /					
TH04	PD	Power Dissipation	—	∕ w	RD = PINTERNAL + PI/O				
TH05	PINTERNAL	Internal Power Dissipation	_ `	W	PINTERNAL = IDD x VDD ⁽¹⁾				
TH06	Pi/o	I/O Power Dissipation	7	W	$PI/O \neq \Sigma$ (IOL * VOL) + Σ (IOH * (VDD - VOH))				
TH07	PDFR	Derated Power	\leftarrow	W	$P_{\text{DFR}} = PD_{\text{MAX}} (T_{\text{J}} - T_{\text{A}})/\theta_{\text{J}} A^{(2)}$				

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

© 2016 Microchip Technology Inc.

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard	Operating Cor	~				
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		Clock high to data-out valid	$\langle - \rangle$	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time		45	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	$\langle \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			<u> </u>	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)					
Param. No. Symbol	Characteristic	Min.	Max.	Units	Conditions
US125 TDTV2CKL	SYNC RCV (Master and Slave)				
\`∕I	Data-setup before CK \downarrow (DT hold time)	10	_	ns	
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns	