

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F15354/55

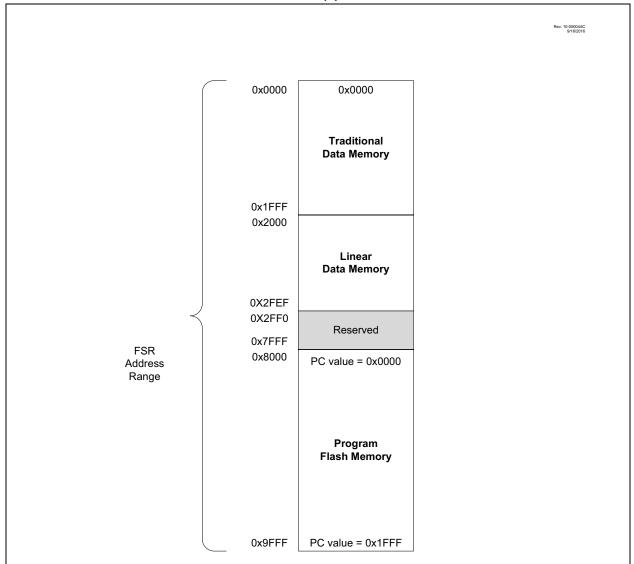
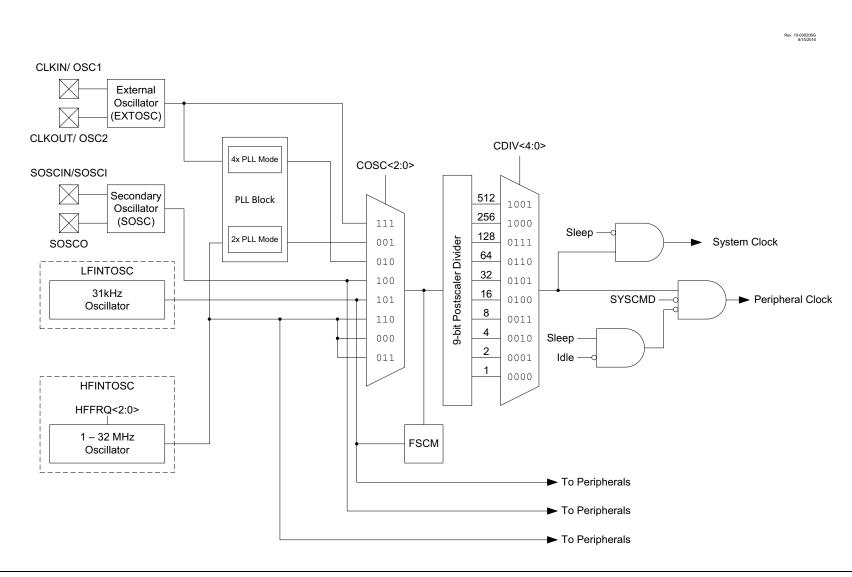



FIGURE 4-10: INDIRECT ADDRESSING PIC16(L)F15355

DS40001853B-page 99

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	bit 7 EXTOEN: External Oscillator Manual Request Enable bit ⁽¹⁾ 1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC 0 = EXTOSC could be enabled by some modules							
bit 6	1 = HFINTO	NTOSC Oscilla SC is explicitly SC could be e	enabled, oper	rating as specif	bit fied by OSCFR	Q		
bit 5	1 = MFINTOS	NTOSC Oscilla SC is explicitly of SC could be en	enabled		bit			
bit 4	LFOEN: LFINTOSC (31 kHz) Oscillator Manual Request Enable bit 1 = LFINTOSC is explicitly enabled 0 = LFINTOSC could be enabled by another module							
bit 3	 SOSCEN: Secondary (Timer1) Oscillator Manual Request bit 1 = Secondary oscillator is explicitly enabled, operating as specified by SOSCPWR 0 = Secondary oscillator could be enabled by another module 							
bit 2	ADOEN: FRC Oscillator Manual Request Enable bit 1 = FRC is explicitly enabled 0 = FRC could be enabled by another module							
bit 1-0	Unimplemen	tad. Dood os '	o'					

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0	
_	_	TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable b	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is s	set	'0' = Bit is clea	red	HS= Hardwa	re Set			
bit 7-6	Unimpleme	nted: Read as '0	,					
bit 5	bit 5 TMR0IF: Timer0 Overflow Interrupt Flag bit							
		register has over register did not		st be cleared in	software)			
bit 4	IOCIF: Interr	rupt-on-Change I	nterrupt Flag	g bit (read-only)	(2)			
	1 = One or	more of the IOC	AF-IOCEF re	egister bits are o	currently set, ind	icating an enal	bled edge was	
		ed by the IOC mo						
		of the IOCAF-IOC	-	bits are current	ly set			
bit 3-1		nted: Read as '0						
bit 0		xternal Interrupt	-					
		T external interru T external interru			ed in software)			
N								
	The External Inter	• •			,		9	
	The IOCIF bit is the application firmware application for the second sec						nag,	

REGISTER 10-10: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

PIC16(L)F15354/55

EXAMPLE 13-1: PFM PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
*
    data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL NVMADRL ; Select Bank for NVMCON registers
MOVLW PROG_ADDR_LO ;
MOVWF NVMADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWF NVMADRU
                                    ; Store MSB of address
    MOVWF NVMADRH
    BCF
             NVMCON1,NVMREGS ; Do not select Configuration Space
    BSF
               NVMCON1, RD
                                    ; Initiate read
    MOVF
                NVMDATL,W
                                      ; Get LSB of word
               NVMDAIL,W, Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			RxyPPS<4:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4-0	RxyPPS<5:0>: Pin Rxy Output Source Selection bits See Table 15-3.

Note 1: TRIS control is overridden by the peripheral as required.

REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0		
—	—	—	—	—	—	—	PPSLOCKED		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

 $\ensuremath{\texttt{1=PPS}}$ is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

20.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 20-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 20-4. The maximum recommended impedance for analog sources is 10 k Ω As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 20-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 20-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

ł

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37\mu s$

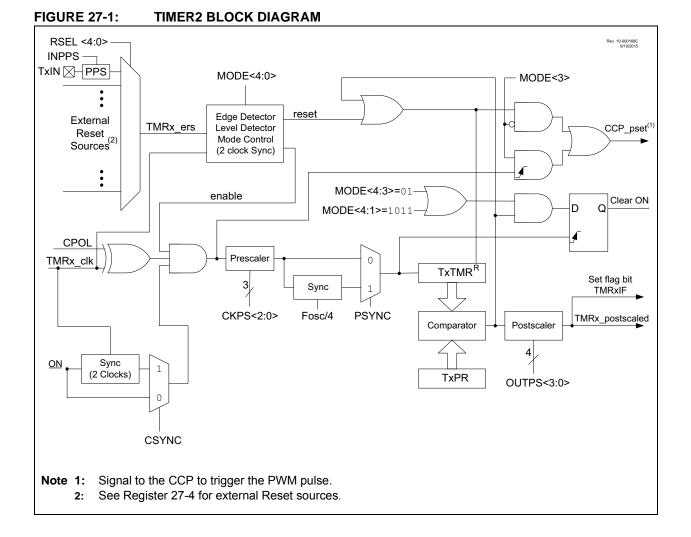
Therefore:

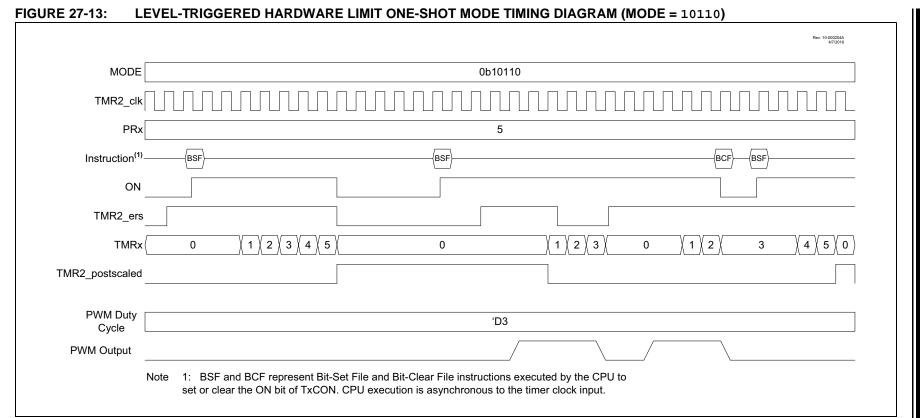
$$TACQ = 2\mu s + 1.37 + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The VAPPLIED has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.


27.0 TIMER2 MODULE WITH HARDWARE LIMIT TIMER (HLT)


The Timer2 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- · 8-bit period register

- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- · Alternate clock sources
- · Interrupt-on-period
- · Three modes of operation:
 - Free Running Period
 - One-shot
 - Monostable

See Figure 27-1 for a block diagram of Timer2. See Figure 27-2 for the clock source block diagram.

29.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

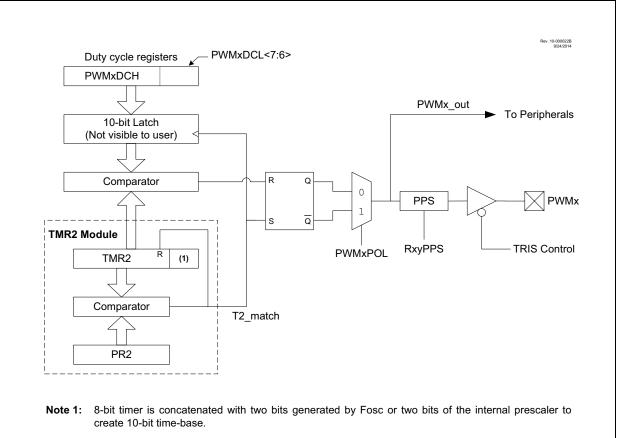

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 29-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin

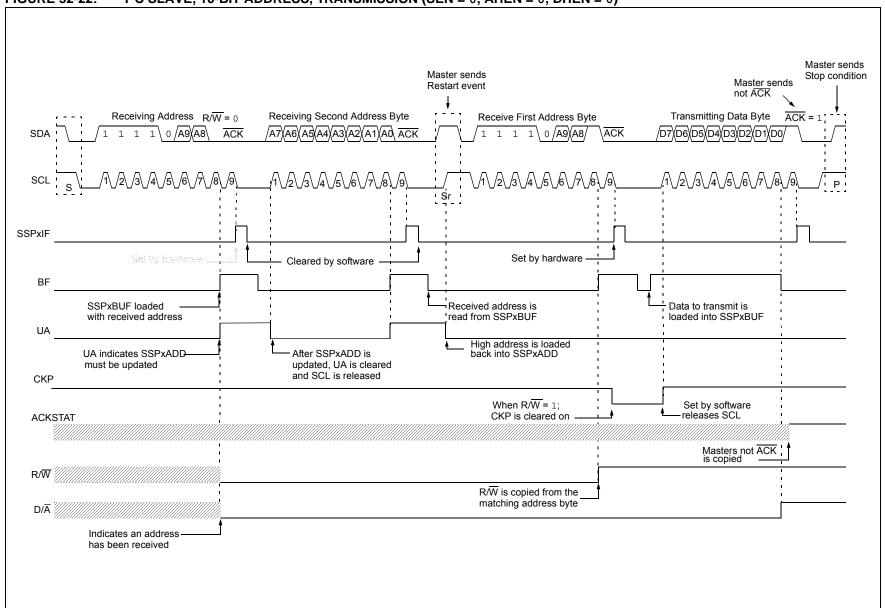
FIGURE 29-2: SIMPLIFIED PWM BLOCK DIAGRAM

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	_	IN	_	POLD	POLC	POLB	POLA		
bit 7	·			· ·		•	bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion			
bit 7-6	Unimpleme	ented: Read as '	o'						
bit 5	•	put Value bit	0						
bit 4		ented: Read as '	0'						
bit 3	•	G1D Output Pola							
	1 = Signal	output is inverted	l polarity						
bit 2	POLC: CW	POLC: CWG1C Output Polarity bit							
	0	output is inverted output is normal							
bit 1	POLB: CW	G1B Output Pola	rity bit						
		output is inverted output is normal							
bit 0	POLA: CW	POLA: CWG1A Output Polarity bit							
	0	output is inverted output is normal							

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

PIC16(L)F15354/55

E.


U-1	U-1	U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	_	—	AS4E	AS3E	AS2E	AS1E	AS0E			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value der	pends on condit	ion				
bit 7-5	Unimplemen	ted: Read as '	כי							
bit 4	AS4E: CLC2	Output bit								
	1 = LC2_out shut-down is enabled									
	0 = LC2_out shut-down is disabled									
bit 3	AS3E: Compa	E: Comparator C2 Output bit								
	1 = C2 output shut-down is enabled									
	0 = C2 output shut-down is disabled									
bit 2	AS2E: Compa	arator C1 Outp	ut bit							
		1 = C1 output shut-down is enabled								
	0 = C1 output shut-down is disabled									
bit 2	AS1E: TMR2	Postscale Out	put bit							
	1 = TMR2 Pc	1 = TMR2 Postscale shut-down is enabled								
	0 = TMR2 Pc	0 = TMR2 Postscale shut-down is disabled								
bit 0	AS0E: CWG1	Input Pin bit								
		selected by CV								
	0 = Input pin	selected by CV	VG1PPS shut	-down is disab	led					

REGISTER 30-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7			•			•	bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion	
bit 7		ing Data D bit					
bit 6	OVRC: Steer	ing Data C bit					
bit 5	OVRB: Steer	ing Data B bit					
bit 4	OVRA: Steer	ing Data A bit					
bit 3	STRD: Steeri	ng Enable D bi	t ⁽²⁾				
		output has the output is assig			polarity control	from POLD bit	
bit 2	STRC: Steeri	ng Enable C bi	t ⁽²⁾				
		output has the output is assig			polarity control	from POLC bit	
bit 1	STRB: Steeri	ng Enable B bi	t(2)				
		output has the output is assign			polarity control	from POLB bit	
bit 0	STRA: Steeri	ng Enable A bi	t(2)				
	1 = CWG1A		CWG1_data		polarity control	from POLA bit	
Note 1: Th	e bits in this re	gister apply onl	y when MOD	E<2:0> = 00x.			

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

FIGURE 32-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F15354/55

32.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

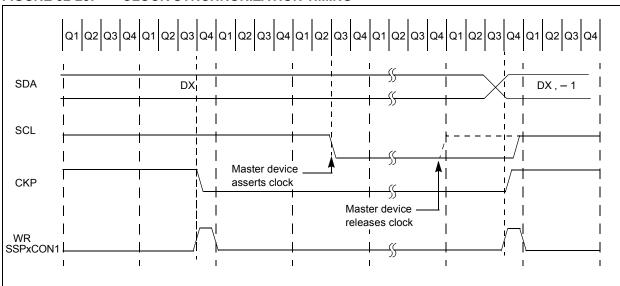
The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

32.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

32.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.


32.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

32.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 32-23).

FIGURE 32-23: CLOCK SYNCHRONIZATION TIMING

32.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generated
- Stop condition generated
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

32.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 32.7** "**Baud Rate Generator**" for more detail.

36.2 General Format for Instructions

TABLE 36-3: INSTRUCTION SET

Mnemonic,		Description	Cycles	14-Bit Opcode			Status	Natas	
Opera	ands	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
	f. d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011		ffff	C, DC, Z	2
	f, d	Swap nibbles in f	1	00	1110	dfff	ffff	-,, -	2
	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (PERATIO	ONS				1	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST		RATION	IS				
	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS			•	L	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL O	PERATIO		1	T					
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16(L)F15354/55

RETLW	Return with literal in W				
Syntax:	[<i>label</i>] RETLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	CALL TABLE;W contains table ;offset value • ;W now has table value				
TABLE	<pre>. ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table Before Instruction</pre>				
	W = $0x07$				

After Instruction

[label] RETURN

None

None

 $\text{TOS} \rightarrow \text{PC}$

RETURN

Operands:

Operation:

Description:

Status Affected:

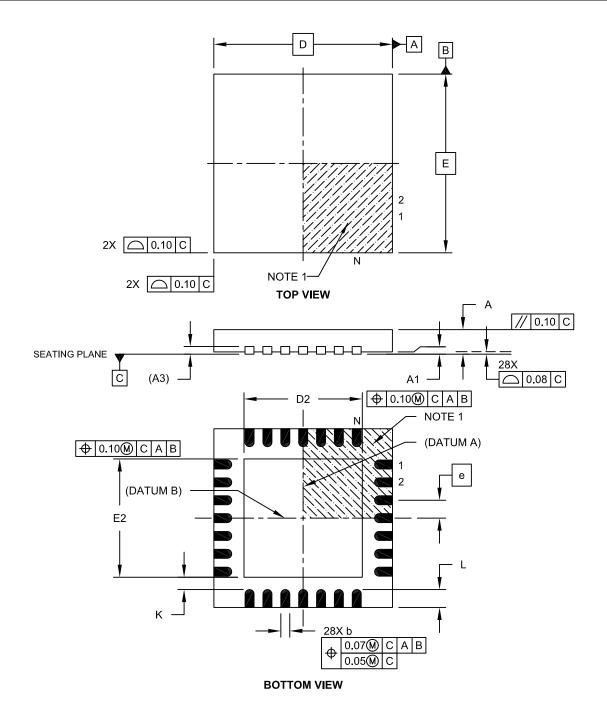
Syntax:

W =

Return from Subroutine

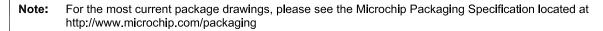
Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

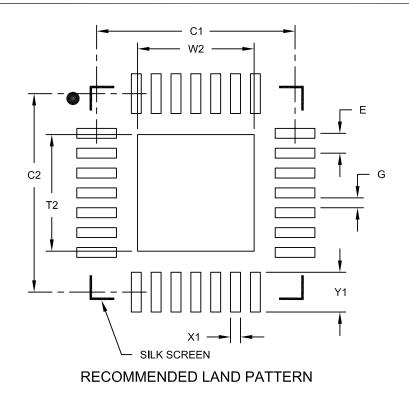
value of k8


RLF	Rotate Left f through Carry						
Syntax:	[<i>label</i>] RLF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.						
	C Register f						
Words:	1						
Cycles:	1						
Example:	RLF REG1,0						
	Before Instruction						
	REG1 = 1110 0110						
	C = 0						
	After Instruction						
	REG1 = 1110 0110						
	W = 1100 1100						
	C = 1						
RRF	Rotate Right f through Carry						
Syntax:	[<i>label</i>] RRF fd						

Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

┌─► C →	Register f	


28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A