

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC16(L)F15354/55 BLOCK DIAGRAM

	FIU. SFEC	AL FUNCTION	REGISTER	SUMMAR I	DANKS U-				1	-	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 3											
				CPU COF	RE REGISTERS;	see Table 4-3 for	- specifics				
18Ch	SSP1BUF	Synchronous Serial P	ort Receive Buffer/	Transmit Register	r					xxxx xxxx	xxxx xxxx
18Dh	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000
18Eh	SSP1MSK				MSK<	:7:0>				1111 1111	1111 1111
18Fh	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
190h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
193h	—				Unimple	mented					
194h	_				Unimple	mented					
195h	_				Unimple	mented					
196h	SSP2BUF	Synchronous Serial P	ort Receive Buffer/	Transmit Register	r					XXXX XXXX	XXXX XXXX
197h	SSP2ADD				ADD<	:7:0>				0000 0000	0000 0000
198h	SSP2MSK				MSK<	:7:0>				1111 1111	1111 1111
199h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
19Ah	SSP2CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
19Bh	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
19Ch	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
19Dh					Unimple	mented					
19Eh					Unimple	mented					
19Fh	<u> </u>				Unimple	mented					

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 21-59	3ank 21-59										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
x0Ch/ x8Ch 	k0Ch/ k8Ch Unimplemented										_
Legend:	x = unknown, u :	= unchanged, q = dep	pends on condition	n, - = unimplemer	nted, read as '0',	r = reserved. Sh	aded locations u	inimplemented, r	read as '0'.		

		ALIONOTION	INE OID I EIN								
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60 (C	ank 60 (Continued)										
1E2Bh	CLC3GLS1	LC3G2D4T	LC3G4D3N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	uuuu uuuu
1E2Ch	CLC3GLS2	LC3G3D4T	LC3G4D3N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	uuuu uuuu
1E2Dh	CLC3GLS3	LC3G4D4T	LC3G4D3N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	uuuu uuuu
1E2Eh	CLC4CON	LC4EN	—	LC4OUT	LC4INTP	LC4INTN	LC4MODE<2:0>			0-00 0000	0-00 0000
1E2Fh	CLC4POL	LC4POL	—	—	—	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
1E30h	CLC4SEL0	—	—		LC4D1S<5:0>						uu uuuu
1E31h	CLC4SEL1	—	—			LC4E	02S<5:0>			xx xxxx	uu uuuu
1E32h	CLC4SEL2	—	—			LC4E	03S<5:0>			xx xxxx	uu uuuu
1E33h	CLC4SEL3	—	—			LC4E	04S<5:0>			xx xxxx	uu uuuu
1E34h	CLC4GLS0	LC4G1D4T	LC4G4D3N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	XXXX XXXX	uuuu uuuu
1E35h	CLC4GLS1	LC4G2D4T	LC4G4D3N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	XXXX XXXX	uuuu uuuu
1E36h	CLC4GLS2	LC4G3D4T	LC4G4D3N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	XXXX XXXX	uuuu uuuu
1E37h	CLC4GLS3	LC4G4D4T	LC4G4D3N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	xxxx xxxx	uuuu uuuu
1E38h 1E6Fh	_				Unimpler	mented				_	_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

5.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. These locations can also be read from the NVMCON register.

5.7 Register Definitions: Device and Revision

REGISTER 5-6: DEVID: DEVICE ID REGISTER

Legend:

R = Readable bit '1' = Bit is set '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values							
PIC16F15354	11 0000 1010 1100 (30ACh)							
PIC16LF15354	11 0000 1010 1101 (30ADh)							
PIC16F15355	11 0000 1010 1110 (30AEh)							
PIC16LF15355	11 0000 1010 1111 (30AFh)							

7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing.

Refer to Table 7-1: Device Configuration Information for PIC16(L)F15354/55 Devices for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloader applications. These locations are read-only and cannot be erased or modified.

	Nomo	DESCRIPTION	VAI	_UE	UNITE
ADDRE55	Name	DESCRIPTION	PIC16(L)F15354	PIC16(L)F15355	
8200h	ERSIZ	Erase Row Size	32	32	Words
8201h	WLSIZ	Number of write latches	32	32	Latches
8202h	URSIZ	Number of User Rows	128	256	Rows
8203h	EESIZ	EE Data memory size	0	0	Bytes
8204h	PCNT	Pin Count	28	28	Pins

TABLE 7-1: DEVICE CONFIGURATION INFORMATION FOR PIC16(L)F15354/55 DEVICES

7.1 DIA and DCI Access

The DIA and DCI data are read-only and cannot be erased or modified. See **13.3.6** "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

8.14 Power Control (PCONx) Registers

The Power Control (PCONx) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0 register bits are shown in Register 8-3. The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

REGISTER 14-22:	ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER
-----------------	---

bit 7							bit 0
ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
R/W-0/0							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ODCC<7:0>: PORTC Open-Drain Enable bits

For RC<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 14-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRC7 | SLRC6 | SLRC5 | SLRC4 | SLRC3 | SLRC2 | SLRC1 | SLRC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits

For RC<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLC7 | INLVLC6 | INLVLC5 | INLVLC4 | INLVLC3 | INLVLC2 | INLVLC1 | INLVLC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits

For RC<7:0> pins, respectively

 $\ensuremath{\mathtt{1}}$ = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

20.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.
	· · · · · · · · · · · · · · · · · · ·

2: The ADC operates during Sleep only when the ADCRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine (ISR).

20.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 20-3 shows the two output formats.

FIGURE 20-3: 10-BIT ADC CONVERSION RESULT FORMAT

PIC16(L)F15354/55

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	119
PIE1	OSFIE	CSWIE	_	—	—	—	—	ADIE	121
PIR1	OSFIF	CSWIF	_	—	_	_	-	ADIF	129
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	173
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	178
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	183
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	174
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	179
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	184
ADCON0			CHS<	5:0>			GO/DONE	ADON	229
ADCON1	ADFM	A	ADCS<2:0>	>	—	—	ADPREF	<1:0>	230
ADACT	—	—	—	—		ADA	CT<3:0>		231
ADRESH				ADRE	SH<7:0>				232
ADRESL				ADRE	SL<7:0>				232
FVRCON	FVREN	FVRRDY	TSEN	TSRNG CDAFVR<1:0> ADFVR<1:0>					216
DAC1CON1	—	_	_			DAC1R<4	:0>		238
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	110

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: Unimplemented, read as '1'.

REGISTER 22-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
			NCO1I	NC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable bi	t	II = I Inimplen	nontod hit road	l as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: DDSINC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 22-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1IN	IC<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

REGISTER 22-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	NCO1INC<19:16>				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1,}	2) CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0> ^(6, 7)	1	
bit 7	÷	· · · · · ·					bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpleme	nted bit, read as	ʻ0'	
u = Bit is une	changed	x = Bit is unknov	vn	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is se	et	'0' = Bit is cleare	d				
bit 7	PSYNC: Time	rx Prescaler Synch	ronization Ena	ble bit ^(1, 2)			
	1 = TMRx Pr	escaler Output is s	ynchronized to	Fosc/4			
h # 0			ot synchronize	u 10 FOSC/4			
DIE O	1 = Falling er	rx Clock Polarity S	election bit	scaler			
	0 = Rising ed	lge of input clock c	locks timer/pre	scaler			
bit 5	CKSYNC: Tim	erx Clock Synchro	nization Enable	e bit ^(4, 5)			
	1 = ON regis	ter bit is synchroniz	zed to TMR2_c	lk input			
	0 = ON regis	ter bit is not synchi	ronized to TMR	2_clk input			
bit 4-0	MODE<4:0>:	Timerx Control Mo	de Selection bi	ts ^(6, 7)			
	See Table 27-1						
Note 1:	Setting this bit ens	ures that reading T	MRx will return	n a valid value.			
2:	When this bit is '1'	, Timer2 cannot op	erate in Sleep	mode.			
3:	CKPOL should not	t be changed while	ON = 1.				
4:	Setting this bit ens	ures glitch-free op	eration when th	e ON is enabled	or disabled.		
5:	When this bit is se	t then the timer op	eration will be c	lelayed by two TN	/IRx input clocks	after the ON bit	is set.
6:	Unless otherwise in of TMRx).	ndicated, all modes	s start upon ON	= 1 and stop upo	n ON = 0 (stops	occur without affe	ecting the value

REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

31.7 Register Definitions: CLC Control

REGISTER 31-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
LCxEN	—	LCxOUT LCxINTP LCxINTN LCxMODE<2:0>							
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it					
	1 = Configura	able logic cell i	s enabled and	mixing input si	ignals				
	0 = Configura	able logic cell i	s disabled and	l has logic zero	output				
bit 6	Unimplemen	ted: Read as '	0'						
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Ou	utput bit					
	Read-only: lo	gic cell output	data, after LCI	POL; sampled f	from CLCxOU1	Г			
bit 4	LCxINTP: Co	nfigurable Log	ic Cell Positive	tive Edge Going Interrupt Enable bit					
	1 = CLCxIF v	vill be set when	n a rising edge	e occurs on CL	CxOUT				
		vill not be set				1. 1.9			
DIT 3		onfigurable Log	ic Cell Negativ	ve Eage Going		ie dit			
	1 = CLCXIFV 0 = CLCXIFV	vill be set wher vill not be set	a failing edg	e occurs on CL	CXUUT				
hit 2-0		••••••••••••••••••••••••••••••••••••••	hle I ogic Cell	Functional Mo	de hits				
5112 0	111 = Cell is	1-input transp	arent latch wit	h S and R					
	110 = Cell is	J-K flip-flop wi	th R						
	101 = Cell is	2-input D flip-f	lop with R						
	100 = Cell is	1-input D flip-f	lop with S and	IR					
	011 = Cell is	S-R latch							
	010 = Cell is	OR-XOR							
	000 = Cell is	AND-OR							

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7				•			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
			_ / .				
bit 7	LCxG4D4T: (Jate 3 Data 4 I	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i (true) is not gat	into CLCx Gat ted into CLCx	e 3 Gate 3			
bit 6	LCxG4D4N:	Gate 3 Data 4 I	Negated (inve	rted) bit			
2.1.0	1 = CLCIN3	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN3	(inverted) is no	t gated into Cl	_Cx Gate 3			
bit 5	LCxG4D3T: (Gate 3 Data 3 1	True (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	into CLCx Gat	e 3			
	0 = CLCIN2	(true) is not gal	ted into CLCx	Gate 3			
bit 4	LCxG4D3N: (Gate 3 Data 3	Negated (inve	rted) bit			
	1 = CLCIN2	(inverted) is ga (inverted) is no	ted into CLCX t dated into Cl	Cx Gate 3			
bit 3	LCxG4D2T: (Gate 3 Data 2 1	Frue (non-inve	rted) bit			
	1 = CLCIN1 ((true) is gated i	into CLCx Gat	e 3			
	0 = CLCIN1 ((true) is not gat	ted into CLCx	Gate 3			
bit 2	LCxG4D2N:	Gate 3 Data 2 I	Negated (inve	rted) bit			
	1 = CLCIN1	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN1 ((inverted) is no	t gated into Cl	Cx Gate 3			
bit 1	LCxG4D11: 0	Jate 4 Data 1 I	rue (non-inve	rted) bit			
	$\perp = CLCINU($ 0 = CLCINU((true) is gated i (true) is not gat	ted into CLCX Gat	e o Gate 3			
bit 0	LCxG4D1N:	Gate 3 Data 1	Negated (inve	rted) bit			
	1 = CLCIN0	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCINO	(inverted) is no	t gated into Cl	_Cx Gate 3			

REGISTER 31-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

32.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

32.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 32-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 32-5) affects the address matching process. See **Section 32.5.9** "**SSP Mask Register**" for more information.

32.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

32.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

32.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 32-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register.

32.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 32-14 and Figure 32-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

FIGURE 32-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

Preliminary

PIC16(L)F15354/55

PIC16(L)F15354/55

TABLE 37-8: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32		MHz	(Note 2)			
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency		1 2		MHz MHz				
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency	_	500	_	kHz				
OS53*	FLFOSC	Internal LFINTOSC Frequency		31	\uparrow	kHz	\backslash			
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	µs ¥s	VREGPM = 0 VREGPM = 1			
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time		0.2	X	ms	J			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, Vpb and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

2: See Figure 37-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

FIGURE 37-6: PRECISION CALIBRATED HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPRERATURE

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A