

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack**" for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6** "**Indirect Addressing**" for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary**" for more details.

4.3.3 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes of the data banks 0-59 and 100 bytes of the data banks 60-63, after the core registers.

The SFRs associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

4.3.4 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.

4.3.4.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 4.6.2** "**Linear Data Memory**" for more information.

4.3.5 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

4.3.6 DEVICE MEMORY MAPS

The memory maps are as shown in Table 4-4 through Table 4-9.

TABLE 4-10:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 2	ank 2										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
10Ch									-	_	
119h	RC1REG	EUSART Receive Data Register								0000 0000	0000 0000
11Ah	TX1REG	EUSART Transmit Da	ta Register							0000 0000	0000 0000
11Bh	SP1BRGL				SP1BR0	G<7:0>				0000 0000	0000 0000
11Ch	SP1BRGH				SP1BRG	i<15:8>				0000 0000	0000 0000
11Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR								V <u>alue o</u> n: MCLR
Bank 21-59	Jank 21-59										
CPU CORE REGISTERS; see Table 4-3 for specifics											
x0Ch/ x8Ch 											
Legend:	x = unknown, u :	= unchanged, q = dep	ends on conditior	ı, - = unimplemer	nted, read as '0',	r = reserved. Sh	aded locations u	inimplemented, r	ead as '0'.		

7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing.

Refer to Table 7-1: Device Configuration Information for PIC16(L)F15354/55 Devices for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloader applications. These locations are read-only and cannot be erased or modified.

ADDRESS	Name	DESCRIPTION	VAI	UNITS	
ADDRESS Name		DESCRIPTION	PIC16(L)F15354	PIC16(L)F15355	UNITS
8200h	ERSIZ	Erase Row Size	32	32	Words
8201h	WLSIZ	Number of write latches	32	32	Latches
8202h	URSIZ	Number of User Rows	128	256	Rows
8203h	EESIZ	EE Data memory size	0	0	Bytes
8204h	PCNT	Pin Count	28	28	Pins

TABLE 7-1: DEVICE CONFIGURATION INFORMATION FOR PIC16(L)F15354/55 DEVICES

7.1 DIA and DCI Access

The DIA and DCI data are read-only and cannot be erased or modified. See **13.3.6** "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7 EXTOEN: External Oscillator Manual Request Enable bit ⁽¹⁾ 1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC 0 = EXTOSC could be enabled by some modules								
bit 6	bit 6 HFOEN: HFINTOSC Oscillator Manual Request Enable bit 1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ 0 = HFINTOSC could be enabled by another module							
bit 5	1 = MFINTOS	NTOSC Oscilla SC is explicitly of SC could be en	enabled		bit			
bit 4	1 = LFINTO	ITOSC (31 kHz SC is explicitly SC could be er	enabled		Enable bit			
bit 3 SOSCEN: Secondary (Timer1) Oscillator Manual Request bit 1 = Secondary oscillator is explicitly enabled, operating as specified by SOSCPWR 0 = Secondary oscillator could be enabled by another module								
bit 2	2 ADOEN: FRC Oscillator Manual Request Enable bit 1 = FRC is explicitly enabled 0 = FRC could be enabled by another module							
bit 1-0								

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	
bit 7							bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is un	changed	x = Bit is unkr	nown	•	at POR and BO		ther Resets	
'1' = Bit is set '0' = Bit is cleared				HS = Hardwa	re clearable			
bit 7		ART2 Receive I	nterrunt Enab	le hit				
					at least one by	te)		
		ART2 receive				,		
bit 6	TX2IF: EUSA	RT2 Transmit I	Interrupt Enab	le bit				
					unoccupied spa			
	0 = The EUS TXxREG		it buffer is cu	rrently full. Th	e application f	rmware should	d not write to	
bit 5	RC1IF: EUSA	ART1 Receive I	nterrupt Flag	(read-only) bit	(1)			
	1 = The EUSART1 receive buffer is not empty (contains at least one byte)							
	0 = The EUSART1 receive buffer is empty							
bit 4		TX1IF: EUSART1 Transmit Interrupt Flag (read-only) bit ⁽²⁾ 1 = The EUSART1 transmit buffer contains at least one unoccupied space						
					ne application f		d not write to	
					in the transmit			
bit 3	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt FI	ag bit				
		ision was dete	•	cleared in soft	ware)			
bit 2		ollision was det) Interrupt Elev	a hit			
DIL Z	-	chronous Seria	-	-	lete (must be cl	eared in softwa	are)	
		or the Transmis	•		•		10)	
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt Fl	ag bit				
		llision was dete		cleared in sof	ťware)			
		ollision was de						
bit 0		chronous Seria	•	<i>,</i> , ,	•			
		or the Transmis			lete (must be cl on in progress	eared in soltwa	ire)	
	The RC1IF flag is a imes to remove al				firmware must	read from RCx	REG enough	
	he TX1IF flag is a	-			the transmit but	ffer. To clear the	e TX1IF flag,	
	he firmware must X1IF flag does no						ouffer. The	
	nterrupt flag bits a							
	condition occurs, re ts corresponding e							
	Enable bit, GIE, o							
	Jser software		-					

© 2016 Microchip Technology Inc.

appropriate interrupt flag bits are clear

prior to enabling an interrupt.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited

'1' = Bit is set

0 = Port pin slews at maximum rate

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits For RA<7:0> pins, respectively 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	173
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	173
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	174
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	174
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	175
ODCONA	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	175
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	176
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	176

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Unimplemented, read as '1'.

23.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 23-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- The CMxNSEL and CMxPSEL (Register 23-3 and Register 23-4) contain control bits for the following:
 - Positive input channel selection
 - Negative input channel selection

23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

23.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

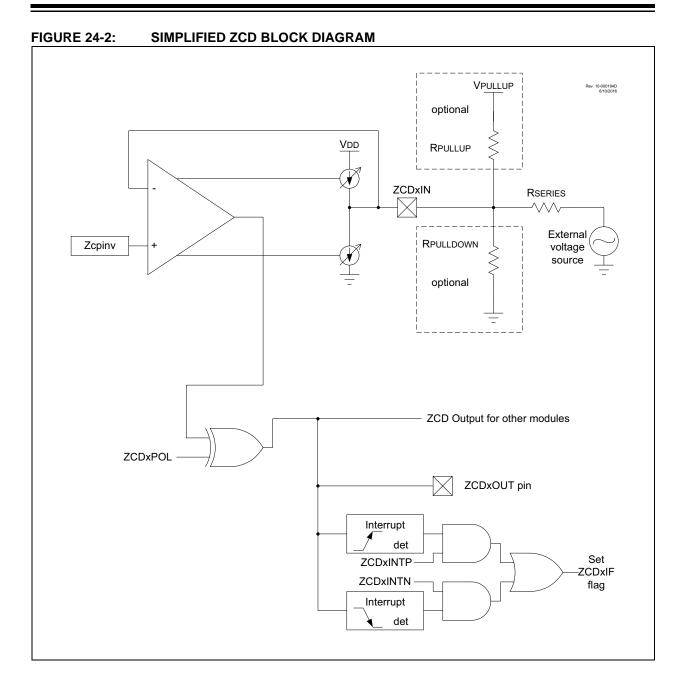
The comparator output can also be routed to an external pin through the RxyPPS register (Register 15-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

23.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input conditions, including polarity control.


TABLE 23-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

REGISTER 23-2:	CMxCON1: COMPARATOR Cx CONTROL REGISTER 1
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—		INTP	INTN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res					other Resets		
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-2 bit 1	Unimplemented: Read as '0' INTP: Comparator Interrupt on Positive-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	 INTN: Comparator Interrupt on Negative-Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾		
bit 7			•			•	bit 0		
Legend:									
R = Readable		W = Writable			nented bit, read				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion			
bit 7		ing Data D bit							
bit 6	OVRC: Steer	ing Data C bit							
bit 5	OVRB: Steer	ing Data B bit							
bit 4	OVRA: Steer	OVRA: Steering Data A bit							
bit 3	STRD: Steeri	TRD: Steering Enable D bit ⁽²⁾							
		output has the output is assig			polarity control	from POLD bit			
bit 2	STRC: Steering Enable C bit ⁽²⁾								
	 1 = CWG1C output has the CWG1_data waveform with polarity control from POLC bit 0 = CWG1C output is assigned the value of OVRC bit 								
bit 1	STRB: Steeri	ng Enable B bi	t(2)						
	 1 = CWG1B output has the CWG1_data waveform with polarity control from POLB bit 0 = CWG1B output is assigned the value of OVRB bit 								
bit 0	STRA: Steeri	ng Enable A bi	t(2)						
	1 = CWG1A		CWG1_data		polarity control	from POLA bit			
Note 1: Th	e bits in this re	gister apply onl	y when MOD	E<2:0> = 00x.					

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

32.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 32-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 32-6, Figure 32-8, Figure 32-9 and Figure 32-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 32-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

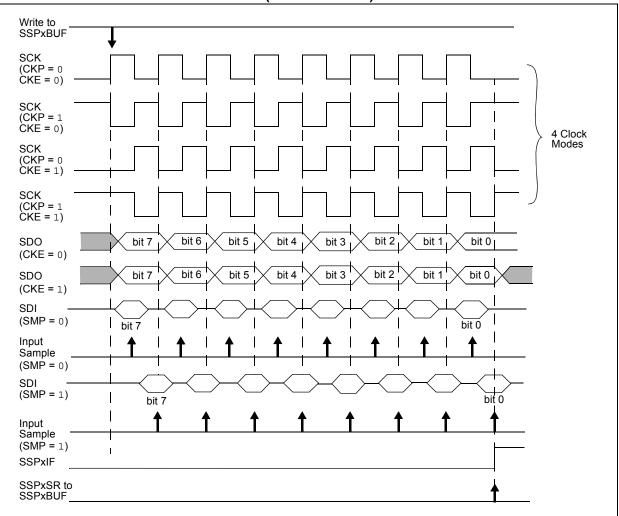
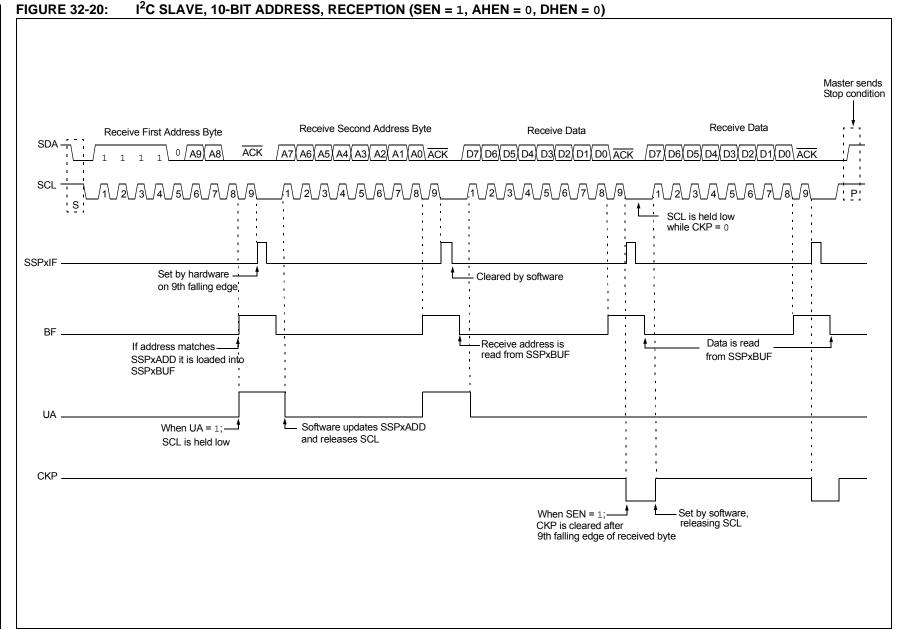
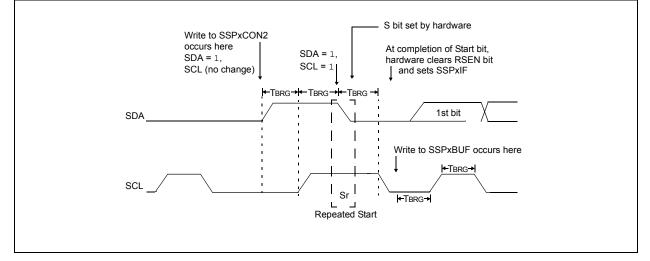
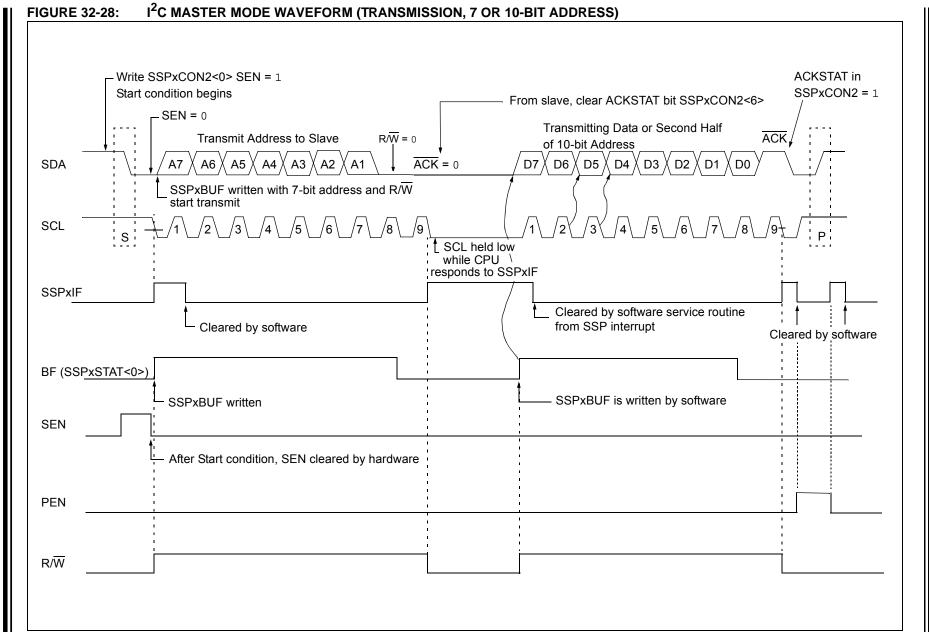



FIGURE 32-6: SPI MODE WAVEFORM (MASTER MODE)

FIGURE 32-20:


PIC16(L)F15354/55


32.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 32-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 32-27: REPEATED START CONDITION WAVEFORM

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR + 1 (preincrement)} \\ &\text{•} \ &\text{FSR - 1 (predecrement)} \\ &\text{•} \ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR + 1 (all increments)} \\ &\text{•} \ &\text{FSR - 1 (all decrements)} \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[label] MOVLB k
Operands:	$0 \le k \le$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 6-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH				
Syntax:	[<i>label</i>] MOVLP k				
Operands:	$0 \le k \le 127$				
Operation:	$k \rightarrow PCLATH$				
Status Affected:	None				
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.				
MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				
MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \to (f)$				
Status Affected:	None				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVWF LATA				
	Before Instruction LATA = 0xFF				
	W = 0x4F				

W = 0x4F After Instruction LATA = 0x4F W = 0x4F

37.2 Standard Operating Conditions

37.2 Standard Operating Conditions	\wedge
The standard operating conditions for any device are defined as:	$\langle \rangle$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
VDD — Operating Supply Voltage ⁽¹⁾	
PIC16LF15354/55	
VDDMIN (Fosc \leq 16 MHz)	
VDDMIN (Fosc \leq 32 MHz)	
VDDMAX	+3.6V
PIC16F15354/55	\sim
VDDMIN (Fosc \leq 16 MHz)	+2.3V
VDDMIN (Fosc \leq 32 MHz)	
VDDMAX	
TA — Operating Ambient Temperature Range	$\langle \rangle \rangle$
Industrial Temperature	
TA_MIN	-40°C
Та_мах	
Extended Temperature	\searrow
	40°C
Та_мах	∕ +125°C
Note 1: See Parameter Supply Voltage, DS Characteristics: Suppl	y Voltage.

TABLE 37-6: THERMAL CHARACTERISTICS

Standar	Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package		
			80	°C/W	28-pin SO/C package		
			90	°C/W	28-pin SSOP pa¢kage		
			48	°C/W	28-pin UQFN 4x4mm package		
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPQIP package		
			24	°C/W	28-pin SOIC package		
			24	°C/W	28-pin-SSOP package		
			12	°C/W	28-pin, UQFN 4x4mm package		
TH03	Тјмах	Maximum Junction Temperature	150	°C /			
TH04	PD	Power Dissipation	_	∕ w	RD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pı/o	I/O Power Dissipation	7	W \	$PI/O \neq \Sigma$ (IOL * VOL) + Σ (IOH * (VDD - VOH))		
TH07	Pder	Derated Power	\leftarrow	Ŵ	P _{DER} = PDmax (T _J - T _A)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

© 2016 Microchip Technology Inc.

TABLE 37-18: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	rd Operating (•	nless otherwis ≤ +125°C	e stated)					
Param. No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	\frown
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	_	/ns /	
				With Prescaler	10	_	_	ns	
42*	TT0P	T0CKI Period	ł		Greater of:	_	_	ns	N = prescale value
							\bigwedge	/	
45*	T⊤1H	T1CKI High	Synchronous, N	No Prescaler	0.5 Tcy + 20	—	1-1	ns	\searrow
		Time	Synchronous, v	vith Prescaler	15	—	+/	/ ns	\checkmark
			Asynchronous		30	$\overline{}$		ns	
46*	TT1L	T1CKI Low Time	Synchronous, N	No Prescaler	0.5 Tcy + 20	$\langle - \rangle$	$\overline{)} - \overline{)}$	\ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30 <	1	Z	ns	
47*	TT1P	T1CKI Input	Synchronous		Greater of.	1		ns	N = prescale value
		Period			30 or <u>TCX + 40</u> N		>		
			Asynchronous	/	60	$\langle - \rangle$		ns	
48	F⊤1	-	scillator Input Fr abled by setting	equency Range bit T1OSCEN)	32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Vosc	_	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.