

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15355t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F15354/55 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC1/ANC1/CCP2 ⁽¹⁾ /IOCC1/SOSCI	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	ANC1	AN	_	ADC Channel C1 input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	CCP2 Capture Input.
	IOCC1	TTL/ST	_	Interrupt-on-change input.
	SOSCI	AN	_	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	_	ADC Channel C2 input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	CCP1 Capture Input.
	IOCC2	TTL/ST	_	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /T2IN ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
IOCC3	ANC3	AN	_	ADC Channel C3 input.
	SCL1 ^(3,4)	l ² C	OD	MSSP1 I ² C input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK? is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	_	Interrupt-on-change input.
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	_	ADC Channel C4 input.
	SDA1 ^(3,4)	I ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	_	Interrupt-on-change input.
RC5/ANC5/IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.
RC6/ANC6/TX1/CK1 ⁽¹⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	_	ADC Channel C6 input.
	TX1	_	CMOS	EUSART1 asynchronous transmit.
	CK1 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART 1 synchronous mode clock input/output.
	IOCC6	TTL/ST	_	Interrupt-on-change input.
RC7/ANC7/RX1/DT1 ⁽³⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN		ADC Channel C7 input.
	RX1	TTL/ST	—	EUSART1 Asynchronous mode receiver data input.
	DT1 ⁽³⁾	TTL/ST	CMOS/OD	EUSART1 Synchronous mode data input/output.
	IOCC7	TTL/ST	_	Interrupt-on-change input.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3. This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1:

2:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Note

2.5 External Oscillator Pins

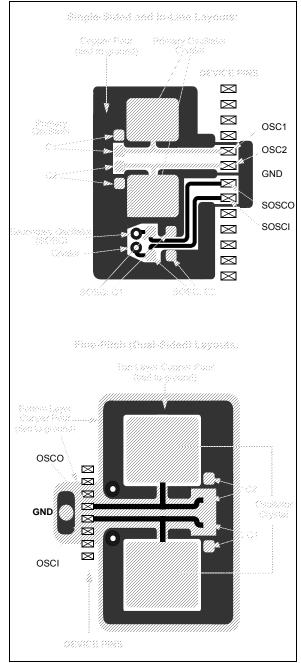
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR			
Bank 61					•				•		•			
				CPU COP	RE REGISTERS	; see Table 4-3 for	specifics							
1E8Ch	E8Ch — Unimplemented													
1E8Dh	—				Unimple	emented								
1E8Eh	—				Unimple	emented								
1E8Fh	PPSLOCK		—	_	—	—	-	—	PPSLOCKED	0	0			
1E90h	INTPPS		—			INTP	PS<5:0>			00 1000	uu uuuu			
1E91h	T0CKIPPS	—	—			TOCKI	PPS<5:0>			00 0100	uu uuuu			
1E92h	T1CKIPPS		—			T1CKI	PPS<5:0>			01 0000	uu uuuu			
1E93h	T1GPPS		—			T1GF	PPS<5:0>			00 1101	uu uuuu			
1E94h					Linimolo	montod								
1E9Bh	—			Unimplemented							_			
1E9Ch	T2INPPS	—	-	T2INPPS<5:0>							uu uuuu			
1E9Dh		Unimplemented												
1EA0h	—				Unimple	ementeu				_	_			
1EA1h	CCP1PPS	_	-			CCP1	PPS<5:0>			01 0010	uu uuuu			
1EA2h	CCP2PPS	—	—			CCP2	PPS<5:0>			01 0001	uu uuuu			
1EA3h					l lucius a la	and a stand								
1EB0h	—				Unimple	ementeu				_	_			
1EB1h	CWG1PPS	_	-			CWG1	PPS<5:0>			00 1000	uu uuuu			
1EB2h					Induced -	montod								
 1EBAh	_				Unimple	ementea				_	_			
1EBBh	CLCIN0PPS	_	_			CLCIN)PPS<5:0>			00 0000	uu uuuu			
1EBCh	CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			00 0001	uu uuuu			
1EBDh	CLCIN2PPS	_	_			CLCIN	2PPS<5:0>			00 1110	uu uuuu			
1EBEh	CLCIN3PPS	_	_			CLCIN	3PPS<5:0>			00 1111	uu uuuu			
1EBFh														
 1EC2h	-				Unimple	emented				_	_			
1EC3h	ADACTPPS	_	_			CLCIN	3PPS<5:0>			001100	uuuuuu			
1EC4h	_		·	•	Unimple									

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15354/55

5.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

5.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 5.4** "Write **Protection**" for more information.

5.4 Write Protection

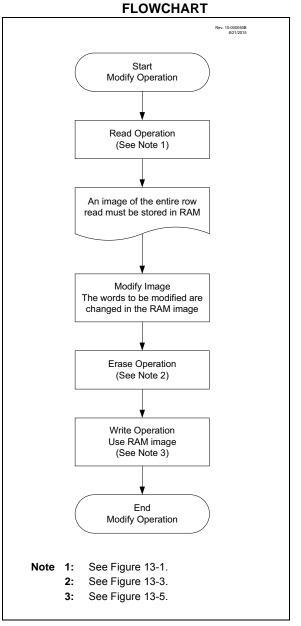
Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRTAPP, WRTSAF, WRTB, WRTC bits in Configuration Words (Register 5-4) define whether the corresponding region of the program memory block is protected or not.

5.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16(L)F153xx Memory Programming Specification" (DS40001838).

PIC16(L)F15354/55


13.3.5 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 13-6:

FLASH PROGRAM MEMORY MODIFY

14.7 Register Definitions: PORTC

REGISTER 14-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. The actual I/O pin values are read from the PORTC register.

REGISTER 14-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated)

= PORTC pin configured as an input (in-state) = PORTC pin configured as an output

0 = PORTC pin configured as an output

REGISTER 14-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register returns actual I/O pin values.

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	VR<1:0>	ADFVI	R<1:0>
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit		mented bit, read		
u = Bit is und	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value de	pends on condit	tion	
bit 7		d Voltage Refe		bit			
		Itage Referenc Itage Referenc					
bit 6	FVRRDY: Fix	ed Voltage Re	ference Ready	/ Flag bit ⁽¹⁾			
		Itage Reference Itage Reference			enabled		
bit 5		erature Indicate	-	-			
		ture Indicator i					
	•	ture Indicator i		<i>(</i> -)			
bit 4		perature Indica		lection bit ⁽³⁾			
		′оо - 4Vт (Higł ′оо - 2Vт (Low	0,				
bit 3-2		D>: Comparato	•	Gain Selection	bits		
	11 = Compar	ator FVR Buffe	er Gain is 4x, (4	4.096V) ⁽²⁾			
		ator FVR Buffe		,			
		ator FVR Buffe ator FVR Buffe		1.024V)			
bit 1-0		ADC FVR Build		ction bit			
DIL 1-0		'R Buffer Gain					
		'R Buffer Gain					
		'R Buffer Gain	is 1x, (1.024V)			
	00 = ADC FV	'R Buffer is off					
Note 1: F	VRRDY is always	s '1' for PIC16	(L)F15354/55 (devices only.			
2: Fi	xed Voltage Refe	erence output o	cannot exceed	VDD.			

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 19.0 "Temperature Indicator Module" for additional information.

22.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 22-1 is a simplified block diagram of the NCO module.

23.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 23-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 23-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- The CMxNSEL and CMxPSEL (Register 23-3 and Register 23-4) contain control bits for the following:
 - Positive input channel selection
 - Negative input channel selection

23.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

23.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 15-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

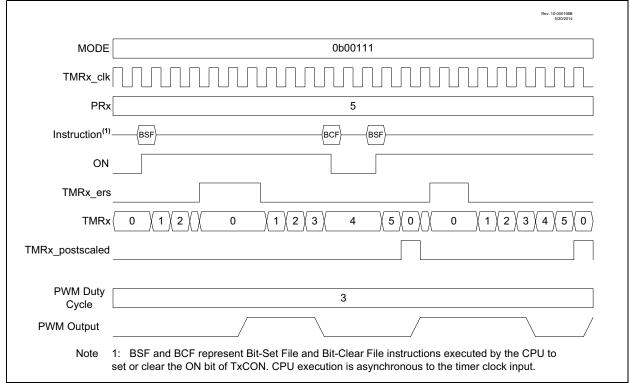
23.2.3 COMPARATOR OUTPUT POLARITY

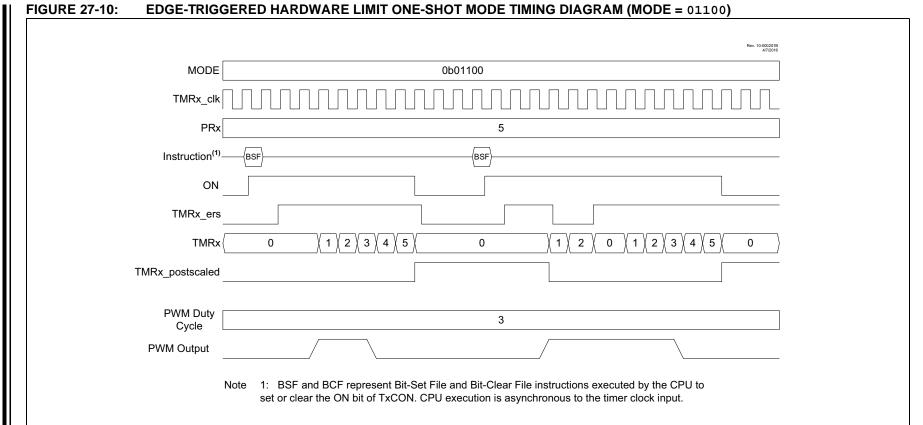
Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 23-2 shows the output state versus input conditions, including polarity control.

TABLE 23-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0


27.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE


In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 27-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

© 2016 Microchip Technology Inc.

Preliminary

27.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 10110)
- High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, which-ever of the two starts the timer.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
ON ⁽¹⁾		CKPS<2:0>			OUTP	S<3:0>					
bit 7				-			bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is set	·	'0' = Bit is clea	ared		eared by hardv						
bit 7	ON: Timerx	On bit									
	1 = Timerx	is on									
	0 = Timerx	is off: all counte	rs and state n	nachines are res	set						
bit 6-4	CKPS<2:0>:	: Timer2-type Cl	ock Prescale	Select bits							
	111 = 1: 128	Prescaler									
	110 = 1:64 Prescaler										
	101 = 1:32 Prescaler										
	100 = 1:16 Prescaler										
	011 = 1:8 Prescaler										
		10 = 1:4 Prescaler									
	001 = 1:2 P										
	000 = 1:1 P										
bit 3-0		>: Timerx Outpu	It Postscaler S	Select bits							
	1111 = 1:16										
	1110 = 1:15 Postscaler										
	1101 = 1:14 Postscaler										
	1100 = 1:13 Postscaler 1011 = 1:12 Postscaler										
	1010 = 1:11 Postscaler										
	1001 = 1:10 Postscaler 1000 = 1:9 Postscaler										
	0111 = 1.8 Postscaler										
	0110 = 1.7 Postscaler										
	0101 = 1 :6 F	Postscaler									
	0100 = 1:5 F	Postscaler									
	0011 = 1 :4 F	Postscaler									
	0010 = 1:3 F	Postscaler									
	0001 = 1:2 F										
	0000 = 1:1 F	Postscaler									

REGISTER 27-2: T2CON: TIMER2 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 27.5 "Operation Examples".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN	_	OUT	FMT		MODE	<3:0>		317
CCP2CON	EN	_	OUT	FMT		MODE	<3:0>		317
CCPTMRS0	—	_	—	—	C2TSE	L<1:0>	C1TSE	L<1:0>	320
CCPTMRS1	—	_	—	—	P2TSE	L<1:0>	C1TSE	L<1:0>	321
INTCON	GIE	PEIE	—	—	—	—		INTEDG	119
PIE1	OSFIE	CSWIE	—	—	—	_	_	ADIE	121
PIR1	OSFIF	CSWIF	—	—	—	—	_	ADIF	129
PR2	Timer2 Modu	ule Period Re	gister						
TMR2	Holding Reg	ister for the 8	-bit TMR2 Re	gister					
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		306
T2CLKCON	_	_	_	_		CS<	3:0>		305
T2RST	_	_	_	_		RSEL<3:0>			308
T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			307

TABLE 27-2:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

30.9 CWG Steering Mode

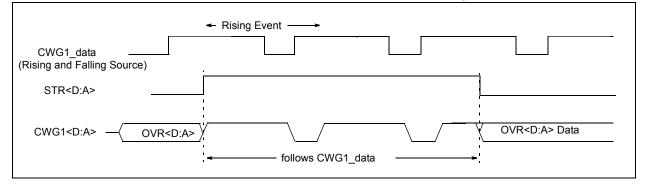
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG1OCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG1OCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 30.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

30.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

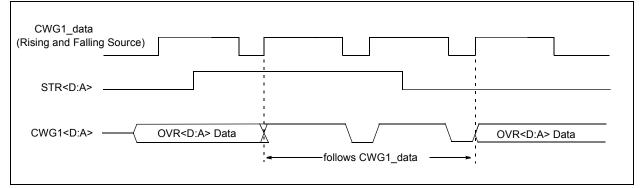

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 30-10 and Figure 30-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 30-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- 5. Slave software reads ACKTIM bit of SSPxCON3 register, and R/\overline{W} and D/\overline{A} of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- 7. Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets the CKP bit releasing the clock.

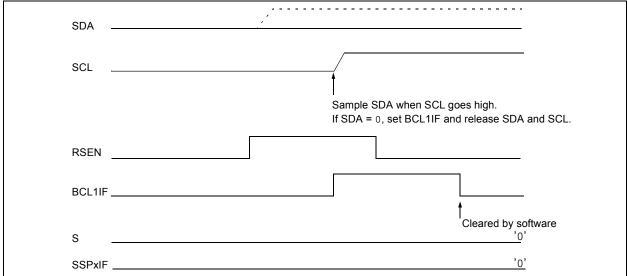
- 14. Master clocks out the data from the slave and sends an \overline{ACK} value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

32.6.13.2 Bus Collision During a Repeated Start Condition

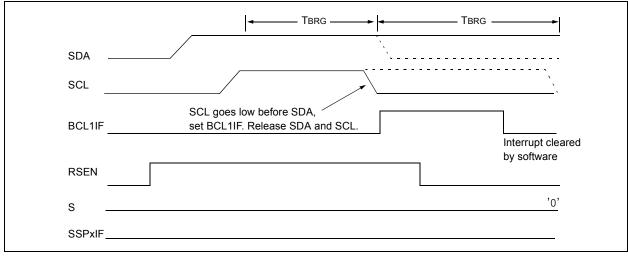
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).


When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

REGISTER 32-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV ⁽¹⁾	SSPEN	СКР		SSP	M<3:0>		
bit 7							bit	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplement				
u = Bit is unchange	d	x = Bit is unknowr		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared		
bit 7	WCOL: Write Collision Detect bit (Transmit mode only) 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision							
bit 6	 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPxBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPxBUF register (must be cleared in software). 0 = No overflow In I²C mode: 1 = A byte is received while the SSPxBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). 0 = No overflow 							
bit 5	 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, the following pins must be properly configured as input or output In SPI mode: I = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ Disables serial port and configures these pins as I/O port pins I = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ Disables serial port and configures these pins as I/O port pins 							
bit 4	CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C Slave mode: SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I ² C Master mode: Unused in this mode							
bit 3-0	SSPM<3:0>: Synchronous Serial Port Mode Select bits 1111 = I ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1101 = Reserved 1010 = Reserved 1011 = I ² C firmware controlled Master mode (slave idle) 1010 = SPI Master mode, clock = Fosc/(4 * (SSPxADD+1)) ⁽⁵⁾ 1001 = Reserved 1000 = I ² C Master mode, clock = Fosc / (4 * (SSPxADD+1)) ⁽⁴⁾ 0111 = I ² C Slave mode, 10-bit address 0101 = SPI Slave mode, clock = SCK pin, <u>SS</u> pin control disabled, <u>SS</u> can be used as I/O pin 0100 = SPI Slave mode, clock = T2_match/2 0011 = SPI Master mode, clock = Fosc/16 0001 = SPI Master mode, clock = Fosc/16							
2: When RxyF	aster mode, the ove n enabled, these pi PPS to select the pi	erflow bit is not set ns must be properly ns.	since each new r / configured as ii		SSPxSSPPS, SSF	by writing to the SS XCLKPPS, SSPxDA	TPPS, and	

When enabled, the SDA and SCL pins must be configured as inputs. Use SSPxCLKPPS, SSPxDATPPS, and RxyPPS to select the pins.
SSPxADD values of 0, 1 or 2 are not supported for I²C mode.
SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

TABLE 37-18: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	rd Operating (•	nless otherwis ≤ +125°C	e stated)					
Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	-		ns	
		With Prescaler			10	_		ns	\frown
41* T⊤0L	T0CKI Low Pulse Width No Presca			0.5 Tcy + 20	—	_	/ns /		
		With Prescaler			10	—	_	ns	
42* TT0P	T0CKI Period			Greater of:	—	_	ns	N = prescale value	
				20 or <u>Tcy + 40</u> N		\bigwedge			
45* T⊤1H	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	7-1	ns	\searrow
			Synchronous, with Prescaler		15	—	+/	/ ŋs	\sim
			Asynchronous		30	$\overline{}$	-	ns	
46* T⊤1L	TT1L	- T1CKI Low Time	Synchronous, N	No Prescaler	0.5 Tcy + 20	$\langle - \rangle$	-	ns	
			Synchronous, v	vith Prescaler	15	\sim		√ns	
			Asynchronous		30 <	1	A	ns	
47* TT1P	TT1P	T1P T1CKI Input Period	Synchronous		Greater of.	1		ns	N = prescale value
					30 or <u>TCX + 40</u> N		>		
			Asynchronous	/	60		—	ns	
48	F⊤1	Secondary Oscillator Input Frequency Range 32.4 32.768 33.1 kHz (oscillator enabled by setting bit T1OSCEN)							
49*	TCKEZTMR1	Delay from E Increment	2 Vosc	—	7 Tosc	—	Timers in Sync mode		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

39.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
 - MPLAB® XPRESS IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

39.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- · Built-in support for Bugzilla issue tracker