

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K × 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32wg880f128-qfp100t

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller. The flash memory is readable and writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32WG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32WG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

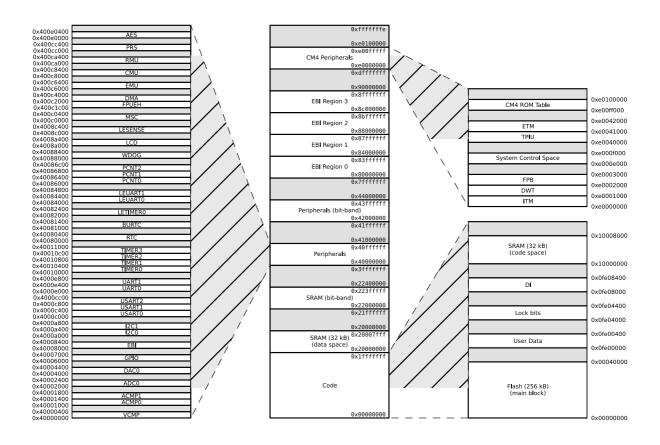
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32WG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.


2.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

2.3 Memory Map

The *EFM32WG880* memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the largest memory configuration.

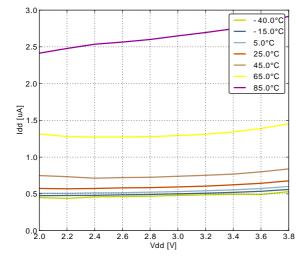
Figure 2.2. EFM32WG880 Memory Map with largest RAM and Flash sizes

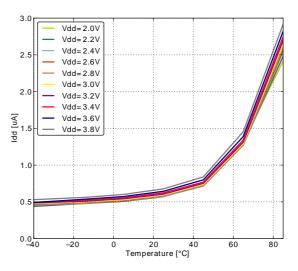
3.3.2 Environmental

Table 3.3. Environmental

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ESDHBM}	ESD (Human Body Model HBM)	T _{AMB} =25°C			2000	V
V _{ESDCDM}	ESD (Charged De- vice Model, CDM)	T _{AMB} =25°C			750	V

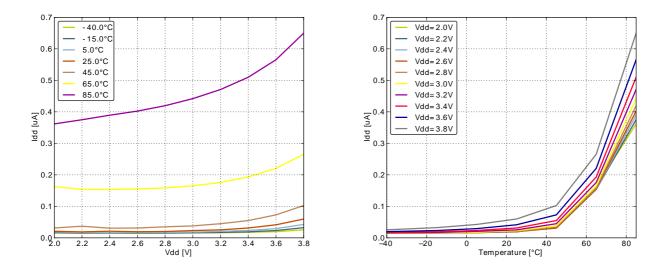
Latch-up sensitivity passed: $\pm 100 \text{ mA}/1.5 \times \text{V}_{\text{SUPPLY}}(\text{max})$ according to JEDEC JESD 78 method Class II, 85°C.


3.4 Current Consumption


Table 3.4. Current Consumption

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		225	236	µA/ MHz
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		225		µA/ MHz
		28 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		226	238	µA/ MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		227		µA/ MHz
		21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		228	240	µA/ MHz
	EM0 current. No prescaling. Running prime number cal-	21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		229		µA/ MHz
IEMO	culation code from Flash. (Production test condition = 14 MHz)	14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		230	243	µA/ MHz
		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		231		µA/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		232	245	µA/ MHz
	11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		233		µA/ MHz	
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		238	250	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		238		µA/ MHz

3.4.3 EM3 Current Consumption


Figure 3.9. EM3 current consumption.

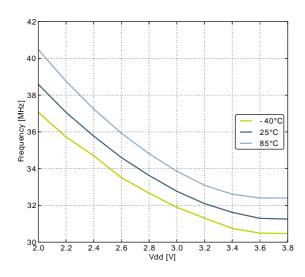
3.4.4 EM4 Current Consumption

Figure 3.10. EM4 current consumption.

3.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 3.5	Energy	Modes	Transitions
-----------	--------	-------	-------------


Symbol	Parameter	Min	Тур	Max	Unit
t _{EM10}	Transition time from EM1 to EM0		0		HF- CORE- CLK cycles
t _{EM20}	Transition time from EM2 to EM0		2		μs
t _{EM30}	Transition time from EM3 to EM0		2		μs
t _{EM40}	Transition time from EM4 to EM0		163		μs

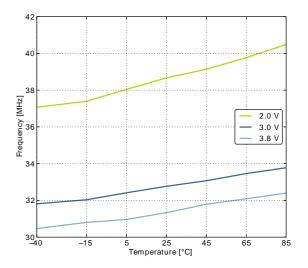

3.9.3 LFRCO

Table 3.11. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequen- cy , V_{DD} = 3.0 V, T _{AMB} =25°C		31.29	32.768	34.28	kHz
t _{LFRCO}	Startup time not in- cluding software calibration			150		μs
I _{LFRCO}	Current consump- tion			300		nA
TUNESTEP _L . FRCO	Frequency step for LSB change in TUNING value			1.5		%

Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage

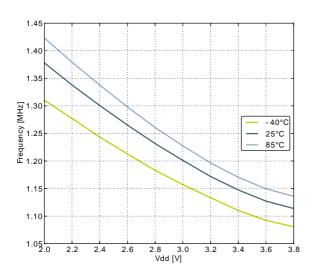

3.9.4 HFRCO

Table 3.12. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
f	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
f _{HFRCO}	су, V _{DD} = 3.0 V, Т _{АМВ} =25°С	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48	6.60	6.72	MHz
		1 MHz frequency band	1.15	1.20	1.25	MHz
t _{HFRCO_settling}	Settling time after start-up	f _{HFRCO} = 14 MHz		0.6		Cycles
		f _{HFRCO} = 28 MHz		165	215	μA
		f _{HFRCO} = 21 MHz		134	175	μA
1	Current consump-	f _{HFRCO} = 14 MHz		106	140	μA
I _{HFRCO}	tion	f _{HFRCO} = 11 MHz		94	125	μA
		f _{HFRCO} = 6.6 MHz		77	105	μA
		f _{HFRCO} = 1.2 MHz		25	40	μA
DC _{HFRCO}	Duty cycle	f _{HFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ¹		%

¹The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

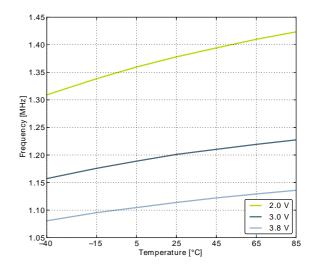


Figure 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

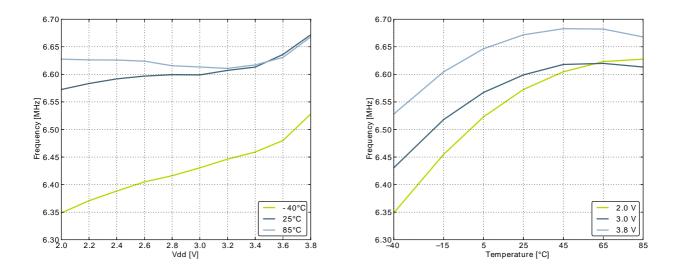


Figure 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

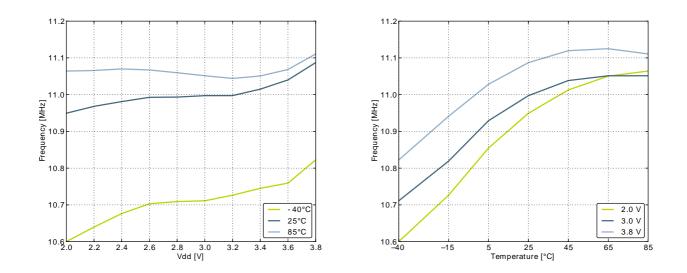
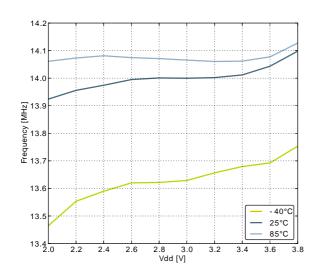
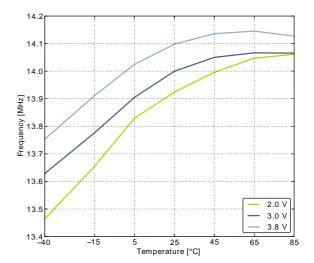




Figure 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

3.9.5 AUXHFRCO

Table 3.13. AUXHFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
f	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
[†] AUXHFRCO	cy, V _{DD} = 3.0 V, T _{AMB} =25°C	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48	6.60	6.72	MHz
		1 MHz frequency band	1.15	1.20	1.25	MHz
t _{AUXHFRCO_settlir}	_g Settling time after start-up	f _{AUXHFRCO} = 14 MHz		0.6		Cycles
DC _{AUXHFRCO}	Duty cycle	f _{AUXHFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{AUX} HFRCO	Frequency step for LSB change in TUNING value			0.3 ¹		%

¹The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

3.9.6 ULFRCO

Table 3.14. ULFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{ULFRCO}	Oscillation frequen- cy	25°C, 3V	0.7		1.75	kHz
TC _{ULFRCO}	Temperature coeffi- cient			0.05		%/°C
VC _{ULFRCO}	Supply voltage co- efficient			-18.2		%/V

3.10 Analog Digital Converter (ADC)

Table 3.15. ADC

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ADCIN}	Input voltage range	Single ended	0		V _{REF}	V
V ADCIN	input voltage range	Differential	-V _{REF} /2		V _{REF} /2	V
VADCREFIN	Input range of exter- nal reference volt- age, single ended and differential		1.25		V _{DD}	V
V _{ADCREFIN_CH7}	Input range of ex- ternal negative ref- erence voltage on channel 7	See V _{ADCREFIN}	0		V _{DD} - 1.1	V
V _{ADCREFIN_CH6}	Input range of ex- ternal positive ref-	See V _{ADCREFIN}	0.625		V _{DD}	V

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
	and ADC core in NORMAL mode					
	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
SNR _{ADC}	Signal to Noise Ra-	1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference		69		dB
SNRADC	tio (SNR)	200 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference		67		dB
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		63		dB
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, 5V reference		66		dB
		200 kSamples/s, 12 bit, differ- ential, V _{DD} reference	63	66		dB
		200 kSamples/s, 12 bit, differ- ential, 2xV _{DD} reference		70		dB
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		58		dB
SINAD _{ADC}	SIgnal-to-Noise And Distortion-ratio	1 MSamples/s, 12 bit, single ended, internal 2.5V reference		62		dB
	(SINAD)	1 MSamples/s, 12 bit, single ended, V _{DD} reference		64		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB

Figure 3.24. Integral Non-Linearity (INL)

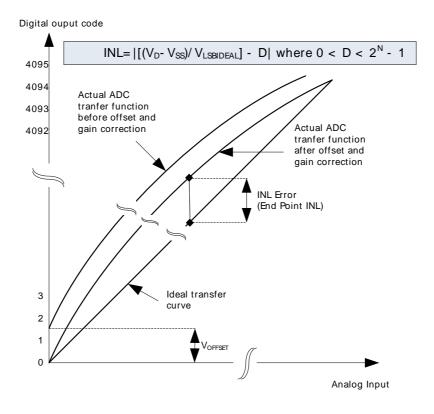
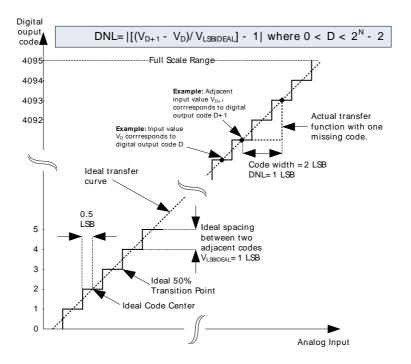



Figure 3.25. Differential Non-Linearity (DNL)

3.10.1 Typical performance

Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C

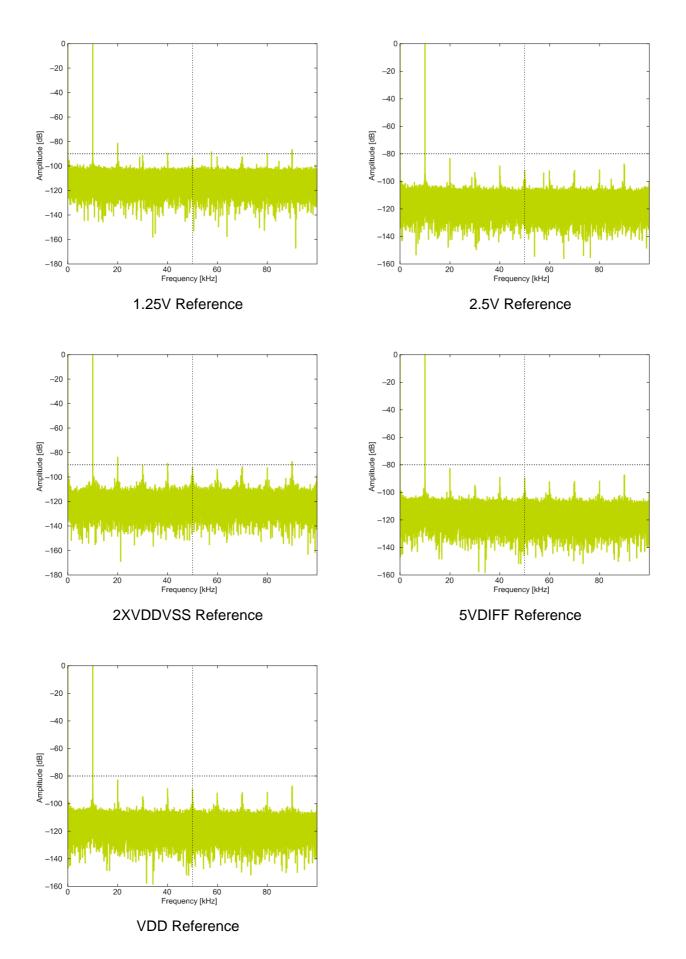


Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2

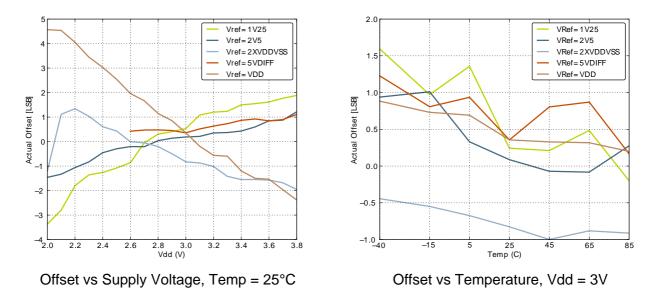
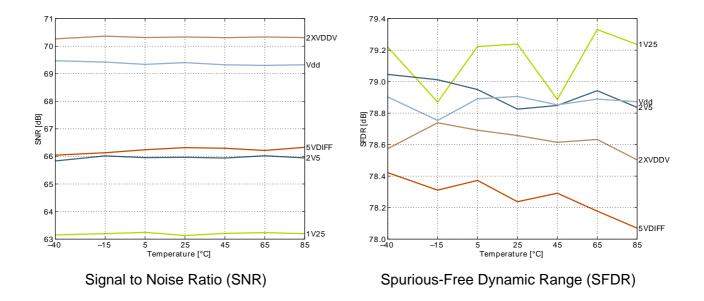



Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="0</td"><td></td><td>196</td><td></td><td>μV_{RMS}</td></f<1>		196		μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="1</td"><td></td><td>229</td><td></td><td>μV_{RMS}</td></f<1>		229		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=0</f<10>		1230		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=1</f<10>		2130		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=0</f<1>		1630		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=1</f<1>		2590		μV _{RMS}

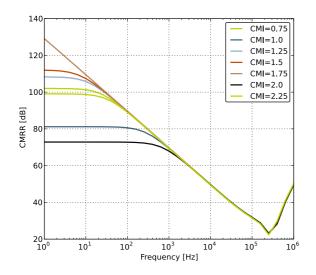
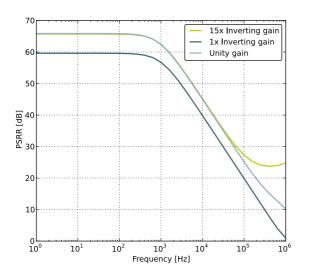
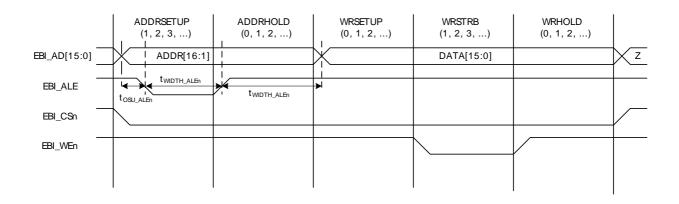



Figure 3.33. OPAMP Positive Power Supply Rejection Ratio

Table 3.20. EBI Write Enable Timing

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OH_WEn 1234}	Output hold time, from trailing EBI_WEn/ EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	-6.00 + (WRHOLD * thfcoreclk)			ns
t _{OSU_WEn 12345}	Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn/ EBI_NANDWEn edge	-14.00 + (WRSETUP * t _{HFCORECLK})			ns
twidth_wen ¹²³⁴⁵	EBI_WEn/EBI_NANDWEn pulse width	-7.00 + ((WRSTRB +1) * t _{HFCORECLK})			ns

¹Applies for all addressing modes (figure only shows D16 addressing mode)


²Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn)

³Applies for all polarities (figure only shows active low signals)

 $^4\text{Measurement}$ done at 10% and 90% of V_DD (figure shows 50% of $_\text{VDD})$

⁵ The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * $t_{HFCLKNODIV}$.

Figure 3.39. EBI Address Latch Enable Related Output Timing

Table 3.21. EBI Address Latch Enable Related Output Timing

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OH_ALEn 1234}	Output hold time, from trailing EBI_ALE edge to EBI_AD invalid	-6.00 + (AD- DRHOLD ⁵ * t _{HFCORE-} _{CLK})			ns
t _{OSU_ALEn 124}	Output setup time, from EBI_AD valid to leading EBI_ALE edge	-13.00 + (0 * t _{HFCORE-} _{CLK})			ns
twidth_Alen ¹²³⁴	EBI_ALEn pulse width	-7.00 + (ADDRSET- UP+1) * t _{HFCORECLK})			ns

¹Applies to addressing modes D8A24ALE and D16A16ALE (figure only shows D16A16ALE)

²Applies for all polarities (figure only shows active low signals)

 3 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALE can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of tOH_ALEn by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

 4 Measurement done at 10% and 90% of V_DD (figure shows 50% of $_{\text{VDD}})$

⁵Figure only shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

Symbol	Parameter	Min	Тур	Max	Unit
t _{SCLK_hi} 12	SCLK high period	3 * t _{HFPER-} CLK			ns
t _{SCLK_lo} ¹²	SCLK low period	3 * t _{HFPER-} CLK			ns
t _{CS_ACT_MI} ¹²	CS active to MISO	5.00		35.00	ns
t _{CS_DIS_MI} ¹²	CS disable to MISO	5.00		35.00	ns
t _{SU_MO} ¹²	MOSI setup time	5.00			ns
t _{H_MO} ¹²	MOSI hold time	2 + 2 * t _{HF-} PERCLK			ns
t _{SCLK_MI} ¹²	SCLK to MISO	-264 + t _{HF-} PERCLK		-234 + 2 * t _{HFPERCLK}	ns

Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $_{\text{VDD}})$

3.19 Digital Peripherals

Table 3.33. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{USART}	USART current	USART idle current, clock en- abled		4.0		μΑ/ MHz
I _{UART}	UART current	UART idle current, clock en- abled		3.8		μΑ/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock en- abled		194.0		nA
I _{I2C}	I2C current	I2C idle current, clock enabled		7.6		μΑ/ MHz
I _{TIMER}	TIMER current	TIMER_0 idle current, clock enabled		6.5		μΑ/ MHz
ILETIMER	LETIMER current	LETIMER idle current, clock enabled		85.8		nA
I _{PCNT}	PCNT current	PCNT idle current, clock en- abled		91.4		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		54.6		nA
I _{LCD}	LCD current	LCD idle current, clock enabled		72.7		nA
I _{AES}	AES current	AES idle current, clock enabled		1.8		μΑ/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled		3.4		μΑ/ MHz
I _{EBI}	EBI current	EBI idle current, clock enabled		6.5		μΑ/ MHz
I _{PRS}	PRS current	PRS idle current		3.9		μΑ/ MHz
I _{DMA}	DMA current	Clock enable		10.9		μΑ/ MHz

	QFP100 Pin# and Name	Pin Alternate Functionality / Description											
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other							
90	PD11	LCD_SEG30	EBI_CS2 #0/1/2										
91	PD12	LCD_SEG31	EBI_CS3 #0/1/2										
92	PE8	LCD_SEG4	EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1							
93	PE9	LCD_SEG5	EBI_AD01 #0/1/2	PCNT2_S1IN #1									
94	PE10	LCD_SEG6	EBI_AD02 #0/1/2	TIM1_CC0 #1	US0_TX #0	BOOT_TX							
95	PE11	LCD_SEG7	EBI_AD03 #0/1/2	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX							
96	PE12	LCD_SEG8	EBI_AD04 #0/1/2	TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0							
97	PE13	LCD_SEG9	EBI_AD05 #0/1/2		US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_0 #0 GPIO_EM4WU5							
98	PE14	LCD_SEG10	EBI_AD06 #0/1/2	TIM3_CC0 #0	LEU0_TX #2								
99	PE15	LCD_SEG11	EBI_AD07 #0/1/2	TIM3_CC1 #0	LEU0_RX #2								
100	PA15	LCD_SEG12	EBI_AD08 #0/1/2	TIM3_CC2 #0									

4.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 62). The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note

Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-TION 0.

Table 4.2. Alternate functionality overview

Alternate			L	OCATIO	N		·	
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2	PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.

EFM°32

...the world's most energy friendly microcontrollers

Alternate			L	OCATIO	N			
Functionality	0	1 2 3 4 5 6						Description
EBI_AD08	PA15	PA15	PA15					External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0	PA0	PA0					External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1	PA1	PA1					External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2	PA2	PA2					External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3	PA3	PA3					External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4	PA4	PA4					External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5	PA5	PA5					External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6	PA6	PA6					External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3	PC11	PC11					External Bus Interface (EBI) Address Latch Enable output.
EBI_ARDY	PF2	PF2	PF2					External Bus Interface (EBI) Hardware Ready Control input
EBI_BL0	PF6	PF6	PF6					External Bus Interface (EBI) Byte Lane/Enable pin 0.
EBI_BL1	PF7	PF7	PF7					External Bus Interface (EBI) Byte Lane/Enable pin 1.
EBI_CS0	PD9	PD9	PD9					External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10	PD10	PD10					External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11	PD11	PD11					External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12	PD12	PD12					External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	PA7	PA7	PA7					External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	PA8	PA8	PA8					External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	PA9	PA9	PA9					External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	PA11	PA11	PA11					External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn	PC3	PC3	PC3					External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	PC5	PC5	PC5					External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	PF5	PF9	PF5					External Bus Interface (EBI) Read Enable output.
EBI_VSNC	PA10	PA10	PA10					External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn	PF4	PF8	PF4					External Bus Interface (EBI) Write Enable output.
ETM_TCLK	PD7	PF8	PC6	PA6				Embedded Trace Module ETM clock .
ETM_TD0	PD6	PF9	PC7	PA2				Embedded Trace Module ETM data 0.
ETM_TD1	PD3		PD3	PA3				Embedded Trace Module ETM data 1.
ETM_TD2	PD4		PD4	PA4				Embedded Trace Module ETM data 2.
ETM_TD3	PD5	PF3	PD5	PA5				Embedded Trace Module ETM data 3.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4

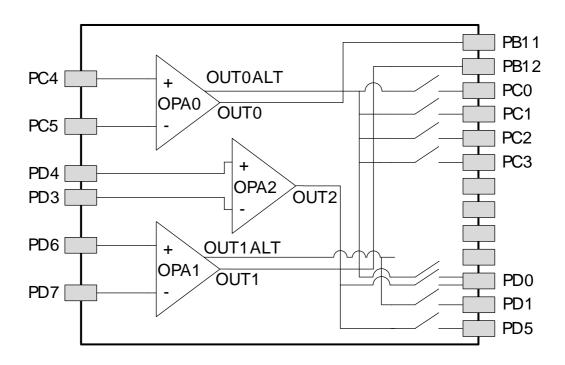
...the world's most energy friendly microcontrollers

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6							LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5. This pin may also be used as LCD COM line 7
LCD_SEG24	PF6							LCD segment line 24. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG25	PF7							LCD segment line 25. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG26	PF8							LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9							LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG28	PD9							LCD segment line 28. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG29	PD10							LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG30	PD11							LCD segment line 30. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG31	PD12							LCD segment line 31. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG32	PB0							LCD segment line 32. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG33	PB1							LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG34	PB2							LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG35	PA7							LCD segment line 35. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.
LCD_SEG36	PA8							LCD segment line 36. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG37	PA9							LCD segment line 37. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG38	PA10							LCD segment line 38. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG39	PA11							LCD segment line 39. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								USART2 Synchronous mode Master Output / Slave Input (MOSI).

4.3 GPIO Pinout Overview

The specific GPIO pins available in *EFM32WG880* is shown in Table 4.3 (p. 70). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0.


Table 4.3. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	-	-	-	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

4.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32WG880 is shown in Figure 4.2 (p. 70).

Figure 4.2. Opamp Pinout

silabs.com

