

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75К х 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sal-xc886-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single Chip Microcontroller

SAL-XC886CLM

1 Summary of Features

The SAL-XC886 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash
 - (includes memory protection strategy)
- I/O port supply at 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Flash 24K/32K x 8		On-Chip Debug Support		UART	UART SSC		7-bit Digital V
Boot ROM 12K x 8		XC800 Core			ompare Unit -bit	Port 1	8-bit Digital V
XRAM 1.5K x 8		XC800 Core			are Unit -bit	Port 2	8-bit Digital/
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	10	ADC 10-bit 8-channel		8-bit Digital V
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1	Watchdog Timer	Port 4	3-bit Digital V

Summary of Features

SAL-XC886 Variant Devices

The SAL-XC886 product family features devices with different configurations and program memory sizes, to offer cost-effective solutions for different application requirements.

The list of SAL-XC886 device configurations are summarized in Table 1.

Device Type	Sales Type	Program Memory (Kbytes)	CAN Module	LIN BSL Support	MDU Module
Flash	SAL-XC886-8FFA 5V	32	No	No	No
S	SAL-XC886C-8FFA 5V	32	Yes	No	No
	SAL-XC886CM-8FFA 5V	32	Yes	No	Yes
	SAL-XC886LM-8FFA 5V	32	No	Yes	Yes
	SAL-XC886CLM-8FFA 5V	32	Yes	Yes	Yes
	SAL-XC886-6FFA 5V	24	No	No	No
	SAL-XC886C-6FFA 5V	24	Yes	No	No
	SAL-XC886CM-6FFA 5V	24	Yes	No	Yes
	SAL-XC886LM-6FFA 5V	24	No	Yes	Yes
	SAL-XC886CLM-6FFA 5V	24	Yes	Yes	Yes

Table 1Device Profile

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term SAL-XC886 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the SAL-XC886, please refer to your responsible sales representative or your local distributor.

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 7**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

3.2.3.1 Password Register

PASSWD

Password	Reset	Value: 07 _H					
7	6	5	4	3	2	1	0
		PASS	I	I	PROTECT _S	МС	DE
		wh			rh	r	W

Field	Bits	Туре	Description							
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits Scheme disabled - direct access to the protected bits is allowed. Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change he value between 11_B and 00_B, the bit field PASS nust be written with 11000_B; only then, will the MODE[1:0] be registered. 							
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits. 							
PASS	[7:3]	wh	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits							

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
вз _Н	MD1 Reset: 00 _H	Bit Field		<u> </u>	<u>. </u>	DA	TA	<u> </u>	<u> </u>	<u> </u>		
	MDU Operand Register 1	Туре				r	W					
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Result Register 1	Туре	rh									
B4 _H	MD2 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 2	Туре				r	w					
B4 _H	MR2 Reset: 00 _H	Bit Field				DATA						
	MDU Result Register 2	Type rh										
в5 _Н	MD3 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Operand Register 3	Туре				r	W					
B5 _H	MR3 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Result Register 3	Туре	rh									
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Operand Register 4	Туре				r	W					
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Result Register 4	Туре	rh									
в7 _Н	MD5 Reset: 00 _H	Bit Field DATA										
	MDU Operand Register 5	Туре				r	W					
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	ATA					
	MDU Result Register 5	Туре				ı	'n					

Table 5MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6 CORDIC Register Overview

	5											
Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1											
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	DATAL									
	CORDIC X Data Low Byte	Туре	rw									
9B _H CD_CORDXH Reset: 00 _H Bit Field DATAH												
	CORDIC X Data High Byte	Туре	rw									
9C _H	CD_CORDYL Reset: 00 _H	Bit Field		DATAL								
	CORDIC Y Data Low Byte	Туре	rw									
9D _H	CD_CORDYH Reset: 00 _H	Bit Field				DA	TAH					
	CORDIC Y Data High Byte	Туре				r	w					
9E _H	CD_CORDZL Reset: 00 _H	Reset: 00 _H Bit Field DATAL										
	CORDIC Z Data Low Byte	Туре	rw									

Table 9Port Register Overview (cont'd)								
Addr	Registe	r Name	Bit	7	6	5		

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
93 _H	P5_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 1 Register	Туре	rw							
во _Н	P3_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Register	Туре	rw							
в1 _Н	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
C8 _H	H P4_ALTSEL0 Reset: 00 _H P4 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 1 Register	Туре	rw							
RMAP =	= 0, PAGE 3									
80 _H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре	rw							
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Open Drain Control Register	Туре	rw							
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Open Drain Control Register	Туре	rw							
в0 _Н	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							
C8 _H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Open Drain Control Register	Туре	rw							

3.2.4.7 ADC Registers

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	-	1		-	-		-			
D1 _H			C	P	ST	NR	0		PAGE	
	Page Register	Туре	١	V	١	w			rw	
RMAP =	= 0, PAGE 0									
са _Н	CA _H ADC_GLOBCTR Reset: 30 _H		ANON	DW	C.	CTC 0				
	Global Control Register	Туре	rw	rw	r	w	r			
св _Н	ADC_GLOBSTR Reset: 00 _H Global Status Register	Bit Field	()		CHNR		0	SAMP LE	BUSY
		Type r rh			r	rh	rh			
cc ^H	CC _H ADC_PRAR Reset: 00 _H Priority and Arbitration Register		ASEN 1	ASEN 0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
			rw	rw	r	rw	rw	rw	rw	rw

Table 10ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0	
		Туре	w	w	w	w	w	w	w	w	
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0	
	Register	Туре	rw								
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0	
		Туре	rh	rh	rh	rh		r	rh	rh	
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(D	EVINC 1	EVINC 0	
	Register	Туре	w	w	w	w		r	w	w	
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(D	EVINS 1	EVINS 0	
		Туре	w	w	w	w		r	w	w	
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(0	EVINP 1	EVINP 0	
	Register	Туре	rw	rw	rw	rw	r rw rv				
RMAP =	= 0, PAGE 6										
CAH	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		0			
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh		I	r		
св _н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()		
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh			r		
сс ^н	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT	
	Register 1	Туре	r	W	w	rw	rw	rw	r	rw	
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT	
		Туре	w	w	w	w	r	rw	r	rw	
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(D	FI	LL	
		Туре	r	r	rh	rh		r	r	h	
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२	
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r		rh		
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२	
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh		
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	२	
	Queue Input Register 0	Туре	w	w	w		r		w		

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field			<u> </u>	CC6	60VH				
	Capture/Compare Register for Channel CC60 High	Туре	rh				h				
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field				CCe	61VL				
	Capture/Compare Register for Channel CC61 Low	Туре				r	h				
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	51VH				
	Capture/Compare Register for Channel CC61 High	Туре				r	h				
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CCe	62VL				
	Capture/Compare Register for Channel CC62 Low	Туре				r	h				
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	2VH				
	Capture/Compare Register for Channel CC62 High	Туре				r	h				
RMAP =	= 0, PAGE 2										
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field		MSI	EL61			MSE	EL60		
	Register Low	Туре		r	W			r	w		
9B _H	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC		MSEL62				
	T12 Capture/Compare Mode Select Register High	Туре	rw	rw			rw				
9CH	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC	
			2 PM	2 OM	62F	62R	61F	61R	60F	60R	
		Туре	rw	rw							
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM	
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw	
9EH	CCU6_INPL Reset: 40 _H Capture/Compare Interrupt Node	Bit Field	INP	INPCHE IN		INPCC62		INPCC61		INPCC60	
	Pointer Register Low	Туре	r	w	r	w	rw		rw		
9F _H	CCU6_INPH Reset: 39 _H Capture/Compare Interrupt Node	Bit Field	(0	INPT13		INPT12		INPERR		
	Pointer Register High	Туре		r	r	w	r	w	r	w	
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R	
	Set Register Low	Туре	w	w	w	w	w	w	w	w	
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM	
	Set Register High	Туре	w	w	w	w	w	w	w	w	
A6 _H	CCU6_PSLR Reset: 00 _H Passive State Level Register	Bit Field	PSL63	0			P	SL			
	, , , , , , , , , , , , , , , , , , ,	Туре			vh						
^{А7} Н	CCU6_MCMCTR Reset: 00 _H Multi-Channel Mode Control Register	Bit Field		0	SW	SYN	0		SWSEL		
		Туре		r	1	w	r	r rw			
FA _H	CCU6_TCTR2L Reset: 00 _H Timer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC	
		Туре	r	r	W		rw		rw	rw	

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М		
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw		r	w		
аа _Н	SSC_CONL Reset: 00 _H	Bit Field		(C			В	C		
	Control Register Low Operating Mode	Туре		r			rh				
ab _h	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Control Register High Programming Mode		rw	rw	r	rw	rw	rw	rw	rw	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ас _Н	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE				
	Transmitter Buffer Register Low	Туре				r	N				
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE				
	Receiver Buffer Register Low	Туре	rh								
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	Field BR_VALU				ALUE				
	Baud Rate Timer Reload Register Low	Туре	rw								
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register High	Туре				n	N				

Table 15 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 16	CAN Register Overview
----------	-----------------------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _H	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High	Туре		l	r		rwh	rwh	rwh	rwh

SAL-XC886CLM

Functional Description

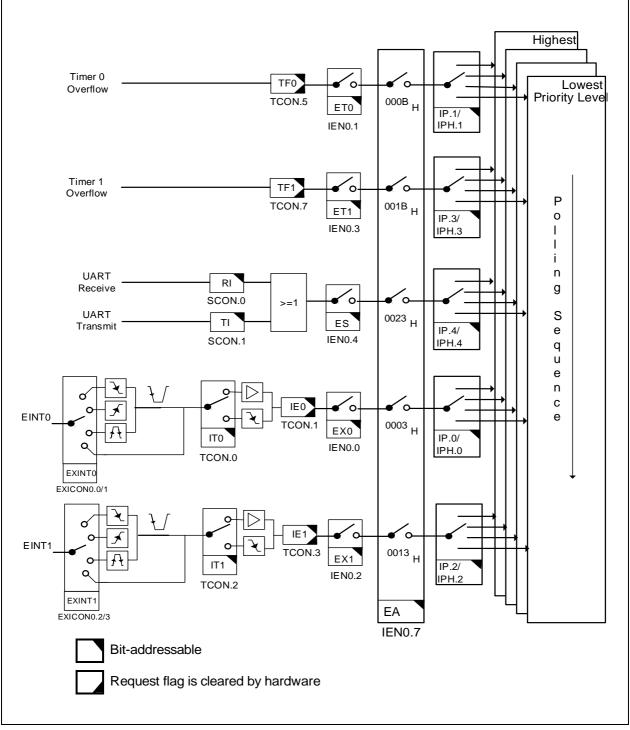
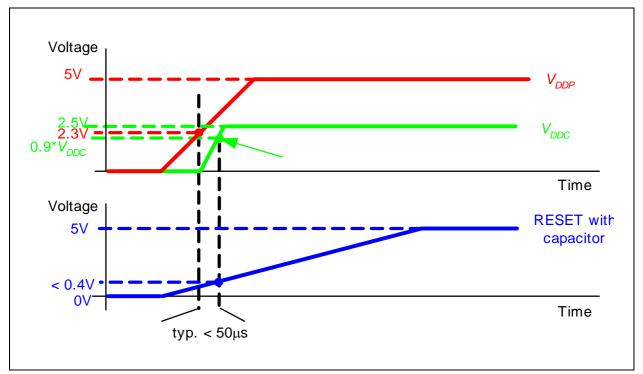


Figure 13 Interrupt Request Sources (Part 1)

3.4.3 Interrupt Priority


An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 20**.

Source	Level					
Non-Maskable Interrupt (NMI)	(highest)					
External Interrupt 0	1					
Timer 0 Interrupt	2					
External Interrupt 1	3					
Timer 1 Interrupt	4					
UART Interrupt	5					
Timer 2,UART Normal Divider Overflow, MultiCAN, LIN Interrupt	6					
ADC, MultiCAN Interrupt	7					
SSC Interrupt	8					
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow, MDU, CORDIC Interrupt	9					
External Interrupt [6:3], MultiCAN Interrupt	10					
CCU6 Interrupt Node Pointer 0, MultiCAN interrupt	11					
CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt	12					
CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt	13					
CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt	14					

Table 20 Priority Structure within Interrupt Level

Figure 22 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in SAL-XC886 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the SAL-XC886 Core in real-time control applications, which require fast mathematical computations.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

Table 27 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation			
Signed 32-bit/16-bit	32-bit	16-bit	33			
Signed 16-bit/16bit	16-bit	16-bit	17			
Signed 16-bit x 16-bit	32-bit	-	16			
Unsigned 32-bit/16-bit	32-bit	16-bit	32			
Unsigned 16-bit/16-bit	16-bit	16-bit	16			
Unsigned 16-bit x 16-bit	32-bit	-	16			
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)			
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)			

 Table 27
 MDU Operation Characteristics

Table 30	Deviation Error for	UAR I with Fractio	nal Divider enal	bled
f_{PCLK}	Prescaling Factor (BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
20 MHz	1	10 (A _H)	230 (E6 _H)	+0.03 %
10 MHz	1	5 (5 _H)	230 (E6 _H)	+0.03 %
6.67 MHz	1	3 (3 _H)	212 (D4 _H)	-0.16 %
5 MHz	1	2 (2 _H)	189 (BD _H)	+0.14 %

war far IIADT with Freetianal Division and blad -61- 20

3.13.2 **Baud Rate Generation using Timer 1**

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate =
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.7)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see Figure 29). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV}, where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.8)

SAL-XC886CLM

Functional Description

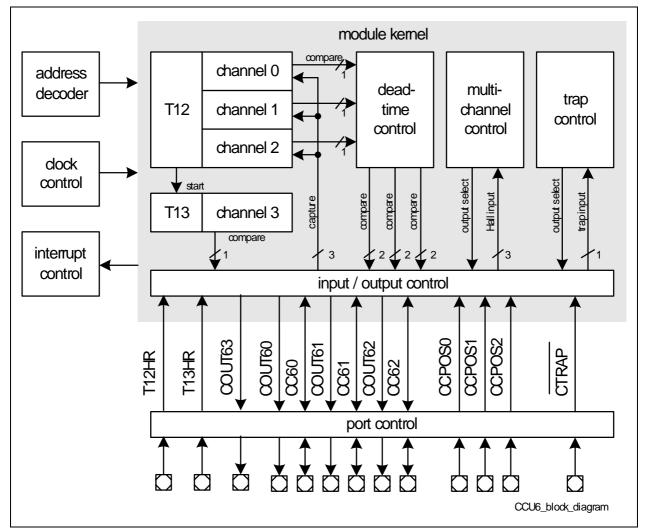


Figure 32 CCU6 Block Diagram

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

10 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.21.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (*t*_{WR})

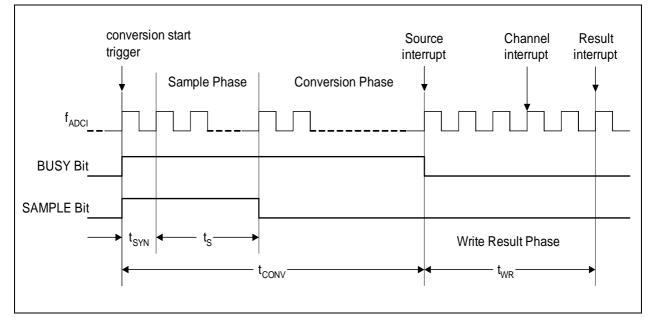


Figure 35 ADC Conversion Timing

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the SAL-XC886.

Table 38 Input/Output Characteristics (Operating Conditions apply)
--

Parameter	Symbol		Limit	Values	Unit	Test Conditions		
			min.	min. max.				
V _{DDP} = 5 V Range						•		
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 15 mA		
			-	1.0	V	I_{OL} = 5 mA, current into all pins > 60 mA		
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA		
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	_	V	I _{OH} = -15 mA		
			V _{DDP} - 1.0	-	V	I_{OH} = -5 mA, current from all pins > 60 mA		
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins \leq 60 mA		
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode		
Input low voltage on P0.0 & P0.1	V_{ILP0}	SR	-0.2	$0.3 imes V_{ m DDP}$	V	CMOS Mode		
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode		
Input low voltage on TMS pin	V_{ILT}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode		
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 imes V_{ m DDP}$	-	V	CMOS Mode		
Input high voltage on P0.0 & P0.1	V_{IHP0}	SR	$0.7 imes V_{ m DDP}$	V_{DDP}	V	CMOS Mode		

SAL-XC886CLM

Electrical Parameters

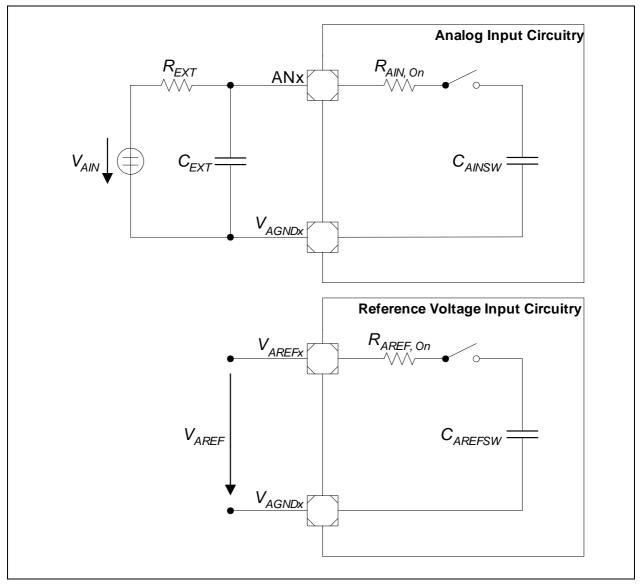


Figure 38 ADC Input Circuits

Electrical Parameters

4.3.6 JTAG Timing

Table 47 provides the characteristics of the JTAG timing in the SAL-XC886.

Table 47TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	Symbol		nits	Unit	Test Conditions	
			min	max			
TCK clock period	t _{TCK}	SR	50	-	ns	1)	
TCK high time	<i>t</i> ₁	SR	20	_	ns	1)	
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)	
TCK clock rise time	<i>t</i> ₃	SR	-	4	ns	1)	
TCK clock fall time	<i>t</i> ₄	SR	-	4	ns	1)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

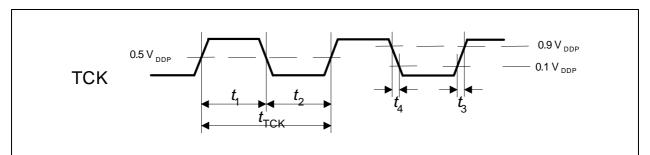


Figure 45 TCK Clock Timing

Table 48JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Lir	nits	Unit	Test	
			min	max		Conditions	
TMS setup to TCK	t ₁	SR	8	-	ns	1)	
TMS hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)	
TDI setup to TCK	t ₁	SR	11	-	ns	1)	
TDI hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)	
TDO valid output from TCK	<i>t</i> ₃	CC	-	27	ns	1)	