

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886cm8ffa5vaclxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

3.6Power Supply System with Embedded Voltage Regulator3.7Reset Control3.7.1Module Reset Behavior3.7.2Booting Scheme3.8Clock Generation Unit3.8.1Recommended External Oscillator Circuits3.8.2Clock Management3.9Power Saving Modes3.10Watchdog Timer3.11Multiplication/Division Unit3.12CORDIC Coprocessor3.13UART and UART13.14Normal Divider Mode (8-bit Auto-reload Timer)3.15LIN Protocol3.16High-Speed Synchronous Serial Interface3.17Timer 0 and Timer 13.18Timer 2 and Timer 213.19Capture/Compare Unit 63.20Controller Area Network (MultiCAN)3.21ADC Clocking Scheme3.21.2ADC Conversion Sequence3.22On-Chip Debug Support3.22.1JTAG ID Register	
3.23 Chip Identification Number	 101
4 Electrical Parameters	 102
4.1 General Parameters	 102
4.1.1 Parameter Interpretation	 102
4.1.2 ADSOIUTE MAXIMUM Rating	 103
4.1.3 Operating Conditions	 104
4.2 DC Falallelels	 105
4.2.1 Input/Output Onaracteristics 1.2.2 Supply Threshold Characteristics	 100
42.3 ADC Characteristics	 100
4231 ADC Conversion Timing	 112
4.2.4 Power Supply Current	 113
4.3 AC Parameters	 115
4.3.1 Testing Waveforms	 115
4.3.2 Output Rise/Fall Times	 116

8-Bit Single Chip Microcontroller

SAL-XC886CLM

1 Summary of Features

The SAL-XC886 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash
 - (includes memory protection strategy)
- I/O port supply at 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Fla 24K/3	ash 92K x 8 On-Chip Debug Support		UART	SSC	Port 0	7-bit Digital V	
Boot ROM 12K x 8				Capture/Co 16	ompare Unit -bit	Port 1	8-bit Digital V
XRAM 1.5K x 8		XC800 Core		— — — — — Сотра 16	are Unit -bit	Port 2	8-bit Digital/
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	AI 10 8-ch	DC -bit annel	Port 3	8-bit Digital V
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1	Watchdog Timer	Port 4	3-bit Digital V

General Device Information

2.3 Pin Configuration

The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in **Figure 4**.

Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

SAL-XC886CLM

General Device Information

Symbol	Pin Number	Туре	Reset State	Function
V_{DDP}	7, 17, 43	_	_	I/O Port Supply (5.0 V) Also used by EVR and analog modules. All pins must be connected.
$V_{\rm SSP}$	18, 42	-	-	I/O Port Ground All pins must be connected.
V _{DDC}	6	_	_	Core Supply Monitor (2.5 V)
V _{SSC}	5	-	_	Core Supply Ground
V _{AREF}	24	-	_	ADC Reference Voltage
V _{AGND}	23	_	_	ADC Reference Ground
XTAL1	4	I	Hi-Z	External Oscillator Input (backup for on-chip OSC, normally NC)
XTAL2	3	0	Hi-Z	External Oscillator Output (backup for on-chip OSC, normally NC)
TMS	10	1	PD	Test Mode Select
RESET	41	1	PU	Reset Input
MBC ¹⁾	44	1	PU	Monitor & BootStrap Loader Control

Table 2Pin Definitions and Functions (cont'd)

1) An external pull-up device in the range of 4.7 k Ω to 100 k Ω . is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

3.2.1 Memory Protection Strategy

The SAL-XC886 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash memory from being read
 - Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6.
- Flash program and erase protection.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 3**.

Flash Protection	Without hardware protection	With hardware protection				
Hardware Protection Mode	-	0	1			
Activation	Program a valid passv	vord via BSL mode 6				
Selection	Bit 4 of password = 0	Bit 4 of password = 1 MSB of password = 0	Bit 4 of password = 1 MSB of password = 1			
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D- Flash			
External access to P-Flash	Not possible	Not possible	Not possible			
P-Flash program and erase	Possible	Not possible	Not possible			
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash			

Table 3 Flash Protection Modes

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 0 6 1 1 0 IMODE 0 0 RMAP r r rw r r rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the SAL-XC886 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 8**.

SAL-XC886CLM

Functional Description

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

Table 7SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
вс _Н	BC _H NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R
	Baud Rate Control Register	Туре	r	W	r	rw		rw		rw
ве _Н	BG Reset: 00 _H	Bit Field				BR_V	ALUE			•
	Baud Rate Timer/Reload Register	Туре				rv	vh			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре				r	w			
EB _H	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре				r	h			
RMAP =	0, PAGE 1									
вз _Н	ID Reset: UU _H	Bit Field	PRODID					VERID		
	Identity Register	Туре	r r							
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	V	/S
			r	rwh	rwh	rw	rw	rwh	rw	
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
B6 _H	H OSC_CON Reset: 08 _H OSC Control Register	Bit Field	0 OSC PD		XPD	OSC SS	ORD RES	OSCR		
				r		rw	rw	rw	rwh	rh
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		N	VIV		VCO BYP	OSC DISC	RESL D	LOCK
			rw				rw	rw	rwh	rh
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G	CLKREL			
			rw	rw	r	rw		rw		
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field	PASS			PROT ECT_S	MC	DE		
		Туре			wh			rh	r	w
вс _Н	FEAL Reset: 00 _H	Bit Field				ECCER	RADDR			
	Low	Туре				r	h			
вd _Н	FEAH Reset: 00 _H	Bit Field				ECCER	RADDR			
	Fiash Error Address Register	Туре				r	h			

	Table 10	ADC Register Overview	(cont'd)
--	----------	-----------------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field	3it Field RESULT									
	Result Register 3 High	Туре	rh									
RMAP =	= 0, PAGE 3											
са _Н	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 0, View A Low	Туре		rh		rh	rh		rh			
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	ULT					
	Result Register 0, View A High	Туре				r	h					
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC CHNR					
	Result Register 1, View A Low	Туре		rh		rh	rh		rh			
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	ULT					
	Result Register 1, View A High	Туре				r	h					
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC CHNR					
	Result Register 2, View A Low	Туре		rh		rh	rh	rh rh				
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	ULT					
	Result Register 2, View A High	Туре				r	h					
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field	RESULT VF			DRC CHNR						
	Result Register 3, View A Low	Туре		rh		rh	rh rh					
D3 _H	ADC_RESRA3H Reset: 00 _H		RESULT									
	Result Register 3, View A High	Туре				r	rh					
RMAP =	0, PAGE 4											
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN	0			DRCT R		
			rw	rw	r	rw	r		rw			
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN	0		DRCT R			
			rw	rw	r	rw	r		rw			
сс _Н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN	0		DRCT R			
		Туре	rw	rw	r	rw	r		rw			
CDH	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
			rw	rw	r	rw		r		rw		
CEH	E _H ADC_VFCR Reset: 00 _H Valid Flag Clear Register			()		VFC3	VFC2	VFC1	VFC0		
					r		w	w	w	w		
RMAP =	0, PAGE 5											
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0		
		Туре	rh	rh	rh	rh	rh	rh	rh	rh		
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0		
		Туре	w	w	w	w	w	w	W	w		

Table 18 shows the Flash data retention and endurance targets.
--

Table 18 Flash Data Retention and Endurance (Operating Conditions apply)

Retention	Endurance ¹⁾	Si	ze	Remarks
		<i>T</i> _A = -40 to 125 °C	<i>T</i> _A = 125 to 150 °C	

Program Flash

20 years	1,000 cycles	up to 32 Kbytes ²⁾	for 32-Kbyte Variant
20 years	1,000 cycles	up to 24 Kbytes ²⁾	for 24-Kbyte Variant

Data Flash

20 years	1,000 cycles ³⁾	4 Kbytes	1 Kbyte	
5 years	10,000 cycles ³⁾	1 Kbyte	256 bytes	
2 years	70,000 cycles ³⁾	512 bytes	128 bytes	
2 years	100,000 cycles ³⁾	128 bytes	32 bytes	

1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 18** is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.

- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.

- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.

2) If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3) For $T_A = 125$ to 150° C, refers to programming of second 8 bytes (bytes 8 to 15) per WL.

3.3.1 Flash Bank Sectorization

The SAL-XC886 product family offers Flash devices with either 24 Kbytes or 32 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) and Data Flash (D-Flash) bank(s) with different sectorization shown in **Figure 10**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations.

The 32-Kbyte Flash device consists of 6 P-Flash and 2 D-Flash banks, while the 24-Kbyte Flash device consists of also of 6 P-Flash banks but with the upper 2 banks only 2 Kbytes each, and only 1 D-Flash bank.

The P-Flash banks are always grouped in pairs. As such, the P-Flash banks are also sometimes referred to as P-Flash bank pair. Each sector in a P-Flash bank is grouped with the corresponding sector from the other bank within a bank pair to form a P-Flash bank pair sector.

SAL-XC886CLM

Functional Description

Figure 13 Interrupt Request Sources (Part 1)

Figure 16 Interrupt Request Sources (Part 4)

3.5 Parallel Ports

The SAL-XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3 and P4 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

3.7 Reset Control

The SAL-XC886 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the SAL-XC886 is first powered up, the status of certain pins (see **Table 22**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches 0.9^*V_{DDC} . The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 21. The V_{DDP} capacitor value is 100 nF while the V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 22.

Figure 21 Reset Circuitry

Figure 22 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in SAL-XC886 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.7.1 Module Reset Behavior

Table 21 lists the functions of the SAL-XC886 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 21 Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the SAL-XC886 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 22 shows the available boot options in the SAL-XC886.

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	Х	User Mode ¹⁾ ; on-chip OSC/PLL non-bypassed	0000 _H
0	0	Х	BSL Mode; on-chip OSC/PLL non-bypassed ²⁾	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ³⁾ ; on-chip OSC/PLL non- bypassed (normal)	0000 _H

 Table 22
 SAL-XC886 Boot Selection

Table 24 shows the VCO range for the SAL-XC886.

	Table	24	VCO	Range
--	-------	----	-----	-------

$f_{\sf VCOmin}$	$f_{\sf VCOmax}$	$f_{\sf VCOFREEmin}$	$f_{\sf VCOFREEmax}$	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 24** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 24** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 25**.

Table 25System frequency ($f_{sys} = 80 \text{ MHz}$)

Power Saving Mode	Action				
Idle	Clock to the CPU is disabled.				
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.				
Power-down	Oscillator and PLL are switched off.				

3.9 Power Saving Modes

The power saving modes of the SAL-XC886 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

Figure 26 Transition between Power Saving Modes

Electrical Parameters

4.3.6 JTAG Timing

Table 47 provides the characteristics of the JTAG timing in the SAL-XC886.

Table 47TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter		Symbol		Limits		Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	_	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	<i>t</i> ₃	SR	-	4	ns	1)
TCK clock fall time	t_4	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 45 TCK Clock Timing

Table 48JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Limits		Unit	Test
			min	max		Conditions
TMS setup to TCK	t ₁	SR	8	-	ns	1)
TMS hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)
TDI setup to TCK ∡	<i>t</i> ₁	SR	11	-	ns	1)
TDI hold to TCK ∡	<i>t</i> ₂	SR	24	-	ns	1)
TDO valid output from TCK	t ₃	CC	-	27	ns	1)