Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 30 MIPs | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 12 | | Program Memory Size | 12KB (4K x 24) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V | | Data Converters | A/D 8x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 18-DIP (0.300", 7.62mm) | | Supplier Device Package | 18-PDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2011-30i-p | ### 2.4 DSP Engine The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic). The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations, which require no additional data. These instructions are ADD, SUB and NEG. The dsPIC30F is a single-cycle instruction flow architecture, therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). See Table 2-2. TABLE 2-2: DSP INSTRUCTION SUMMARY | Instruction | Algebraic
Operation | ACC WB? | |-------------|------------------------|---------| | CLR | A = 0 | Yes | | ED | $A = (x - y)^2$ | No | | EDAC | $A = A + (x - y)^2$ | No | | MAC | A = A + (x * y) | Yes | | MAC | $A = A + x^2$ | No | | MOVSAC | No change in A | Yes | | MPY | $A = x \cdot y$ | No | | MPY.N | $A = -x \bullet y$ | No | | MSC | $A = A - x \bullet y$ | Yes | The DSP engine has several options selected through various bits in the CPU Core Configuration register (CORCON), which are: - 1. Fractional or integer DSP multiply (IF). - 2. Signed or unsigned DSP multiply (US). - 3. Conventional or convergent rounding (RND). - 4. Automatic saturation on/off for ACCA (SATA). - 5. Automatic saturation on/off for ACCB (SATB). - 6. Automatic saturation on/off for writes to data memory (SATDW). - 7. Accumulator Saturation mode selection (ACCSAT). **Note:** For CORCON layout, see Table 3-3. A block diagram of the DSP engine is shown in Figure 2-2. ### 8.2 Reset Sequence A Reset is not a true exception because the interrupt controller is not involved in the Reset process. The processor initializes its registers in response to a Reset which forces the PC to zero. The processor then begins program execution at location 0x000000. A GOTO instruction is stored in the first program memory location immediately followed by the address target for the GOTO instruction. The processor executes the GOTO to the specified address and then begins operation at the specified target (start) address. #### 8.2.1 RESET SOURCES In addition to external Reset and Power-on Reset (POR), there are six sources of error conditions which 'trap' to the Reset vector. - Watchdog Time-out: The watchdog has timed out, indicating that the processor is no longer executing the correct flow of code. - Uninitialized W Register Trap: An attempt to use an uninitialized W register as an Address Pointer causes a Reset. - Illegal Instruction Trap: Attempted execution of any unused opcodes results in an illegal instruction trap. Note that a fetch of an illegal instruction does not result in an illegal instruction trap if that instruction is flushed prior to execution due to a flow change. - Brown-out Reset (BOR): A momentary dip in the power supply to the device has been detected which may result in malfunction. - Trap Lockout: Occurrence of multiple trap conditions simultaneously causes a Reset. ### 8.3 Traps Traps can be considered as non-maskable interrupts indicating a software or hardware error, which adhere to a predefined priority as shown in Figure 8-1. They are intended to provide the user a means to correct erroneous operation during debug and when operating within the application. Note: If the user does not intend to take corrective action in the event of a trap error condition, these vectors must be loaded with the address of a default handler that contains the RESET instruction. If, on the other hand, one of the vectors containing an invalid address is called, an address error trap is generated. Note that many of these trap conditions can only be detected when they occur. Consequently, the questionable instruction is allowed to complete prior to trap exception processing. If the user chooses to recover from the error, the result of the erroneous action that caused the trap may have to be corrected. There are eight fixed priority levels for traps: Level 8 through Level 15, which implies that the IPL3 is always set during processing of a trap. If the user is not currently executing a trap, and he sets the IPL<3:0> bits to a value of '0111' (Level 7), then all interrupts are disabled, but traps can still be processed. ### 8.3.1 TRAP SOURCES The following traps are provided with increasing priority. However, since all traps can be nested, priority has little effect. #### Math Error Trap: The math error trap executes under the following four circumstances: - If an attempt is made to divide by zero, the divide operation is aborted on a cycle boundary and the trap is taken. - If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes an overflow from bit 31 and the accumulator guard bits are not utilized. - If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes a catastrophic overflow from bit 39 and all saturation is disabled. - If the shift amount specified in a shift instruction is greater than the maximum allowed shift amount, a trap occurs. ### 10.1 Timer Gate Operation The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal Tcy to increment the respective timer when the gate input signal (T2CK pin) is asserted high. Control bit, TGATE (T2CON<6>), must be set to enable this mode. When in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0). The falling edge of the external signal terminates the count operation but does not reset the timer. The user must reset the timer in order to start counting from zero. ### 10.2 ADC Event Trigger When a match occurs between the 32-bit timer (TMR3/TMR2) and the 32-bit combined period register (PR3/PR2), or between the 16-bit timer TMR3 and the 16-bit period register PR3, a special ADC trigger event signal is generated by Timer3. #### 10.3 Timer Prescaler The input clock (Fosc/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64, and 1:256, selected by control bits, TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs: - A write to the TMR2/TMR3 register - A write to the T2CON/T3CON register - · A device Reset, such as a POR and BOR However, if the timer is disabled (TON = 0), the Timer 2 prescaler cannot be reset since the prescaler clock is halted. TMR2/TMR3 is not cleared when T2CON/T3CON is written. # 10.4 Timer Operation During Sleep Mode The timer does not operate during CPU Sleep mode because the internal clocks are disabled. ### 10.5 Timer Interrupt The 32-bit timer module can generate an interrupt-on-period match or on the falling edge of the external gate signal. When the 32-bit timer count matches the respective 32-bit period register, or the falling edge of the external "gate" signal is detected, the T3IF bit (IFS0<7>) is asserted and an interrupt is generated if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit must be cleared in software. Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T3IE (IEC0<7>). #### 12.1 Timer2 and Timer3 Selection Mode Each output compare channel can select between one of two 16-bit timers, Timer2 or Timer3. The selection of the timers is controlled by the OCTSEL bit (OCxCON<3>). Timer2 is the default timer resource for the output compare module. # 12.2 Simple Output Compare Match Mode When control bits OCM<2:0> (OCxCON<2:0>) = 001, 010 or 011, the selected output compare channel is configured for one of three simple Output Compare Match modes: - · Compare forces I/O pin low - Compare forces I/O pin high - Compare toggles I/O pin The OCxR register is used in these modes. The OCxR register is loaded with a value and is compared to the selected incrementing timer count. When a compare occurs, one of these Compare Match modes occurs. If the counter resets to zero before reaching the value in OCxR, the state of the OCx pin remains unchanged. ### 12.3 Dual Output Compare Match Mode When control bits OCM<2:0> (OCxCON<2:0>) = 100 or 101, the selected output compare channel is configured for one of two Dual Output Compare modes, which are: - · Single Output Pulse mode - · Continuous Output Pulse mode #### 12.3.1 SINGLE PULSE MODE For the user to configure the module for the generation of a single output pulse, the following steps are required (assuming timer is off): - · Determine instruction cycle time Tcy. - Calculate desired pulse width value based on Tcy. - Calculate time to start pulse from timer start value of 0x0000. - Write pulse width start and stop times into OCxR and OCxRS Compare registers (x denotes channel 1 to N). - Set Timer Period register to value equal to or greater than value in OCxRS Compare register. - Set OCM<2:0> = 100. - Enable timer, TON bit (TxCON<15>) = 1. To initiate another single pulse, issue another write to set OCM<2:0> = 100. #### 12.3.2 CONTINUOUS PULSE MODE For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required: - · Determine instruction cycle time Tcy. - · Calculate desired pulse value based on Tcy. - Calculate timer to start pulse width from timer start value of 0x0000. - Write pulse width start and stop times into OCxR and OCxRS (x denotes channel 1 to N) Compare registers, respectively. - Set Timer Period register to value equal to or greater than value in OCxRS Compare register. - Set OCM<2:0> = 101. - Enable timer, TON bit (TxCON<15>) = 1. ### 12.4 Simple PWM Mode When control bits OCM<2:0> (OCxCON<2:0>) = 110 or 111, the selected output compare channel is configured for the PWM mode of operation. When configured for the PWM mode of operation, OCxR is the main latch (read-only) and OCxRS is the secondary latch. This enables glitchless PWM transitions. The user must perform the following steps in order to configure the output compare module for PWM operation: - Set the PWM period by writing to the appropriate period register. - Set the PWM duty cycle by writing to the OCxRS register. - Configure the output compare module for PWM operation. - Set the TMRx prescale value and enable the Timer, TON bit (TxCON<15>) = 1. # 12.4.1 INPUT PIN FAULT PROTECTION FOR PWM When control bits OCM<2:0> (OCxCON<2:0>) = 111, the selected output compare channel is again configured for the PWM mode of operation with the additional feature of input Fault protection. While in this mode, if a logic '0' is detected on the OCFA/B pin, the respective PWM output pin is placed in the high impedance input state. The OCFLT bit (OCxCON<4>) indicates whether a Fault condition has occurred. This state is maintained until both of the following events have occurred: - The external Fault condition has been removed. - The PWM mode has been re-enabled by writing to the appropriate control bits. **NOTES:** ### TABLE 13-1: SPI1 REGISTER MAP | SFR
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reset State | |--|-------|--------|--------|---------|--------|--------|--------|-------|---------------------|-------|--------|-------|-------|-------|-------|--------|--------|---------------------| | SPI1STAT | 0220 | SPIEN | _ | SPISIDL | _ | _ | _ | _ | _ | _ | SPIROV | | _ | | _ | SPITBF | SPIRBF | 0000 0000 0000 0000 | | SPI1CON | 0222 | _ | FRMEN | SPIFSD | _ | DISSDO | MODE16 | SMP | CKE | SSEN | CKP | MSTEN | SPRE2 | SPRE1 | SPRE0 | PPRE1 | PPRE0 | 0000 0000 0000 0000 | | SPI1BUF 0224 Transmit and Receive Buffer | | | | | | | | | 0000 0000 0000 0000 | | | | | | | | | | dsPIC30F2011/2012/3012/3013 **Legend:** — = unimplemented bit, read as '0' Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. # 15.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) MODULE Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). This section describes the Universal Asynchronous Receiver/Transmitter Communications module. The dsPIC30F2011/2012/3012 processors have one UART module (UART1). The dsPIC30F3013 processor has two UART modules (UART1 and UART2). #### 15.1 UART Module Overview The key features of the UART module are: - Full-duplex, 8 or 9-bit data communication - Even, odd or no parity options (for 8-bit data) - · One or two Stop bits - Fully integrated Baud Rate Generator with 16-bit prescaler - Baud rates range from 38 bps to 1.875 Mbps at a 30 MHz instruction rate - 4-word deep transmit data buffer - · 4-word deep receive data buffer - Parity, framing and buffer overrun error detection - Support for interrupt only on address detect (9th bit = 1) - · Separate transmit and receive interrupts - Loopback mode for diagnostic support - Alternate receive and transmit pins for UART1 FIGURE 15-1: UART TRANSMITTER BLOCK DIAGRAM #### 15.5.2 FRAMING ERROR (FERR) The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1', otherwise FERR will be set. The read-only FERR bit is buffered along with the received data. It is cleared on any Reset. #### 15.5.3 PARITY ERROR (PERR) The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes. It is cleared on any Reset. #### 15.5.4 IDLE STATUS When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle. #### 15.5.5 RECEIVE BREAK The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits. If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated if appropriate and the RIDLE bit is set. When the module receives a long break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the break condition on the line is the next Start bit. Break is regarded as a character containing all '0's with the FERR bit set. The Break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not yet been received. #### 15.6 Address Detect Mode Setting the ADDEN bit (UxSTA<5>) enables this special mode in which a 9th bit (URX8) value of '1' identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode since an interrupt (if enabled) will be generated every time the received word has the 9th bit set. ### 15.7 Loopback Mode Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation. To select this mode: - a) Configure UART for desired mode of operation. - b) Set LPBACK = 1 to enable Loopback mode. - c) Enable transmission as defined in Section 15.3 "Transmitting Data". #### 15.8 Baud Rate Generator The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows: BRG = 16-bit value held in UxBRG register (0 through 65535) FCY = Instruction Clock Rate (1/Tcy) The baud rate is given by Equation 15-1. #### **EQUATION 15-1: BAUD RATE** Baud Rate = FCY / (16*(BRG+1)) Therefore, the maximum baud rate possible is: Fcy /16 (if BRG = 0), and the minimum baud rate possible is: Fcy / (16* 65536). With a full 16-bit Baud Rate Generator at 30 MIPS operation, the minimum baud rate achievable is 28.5 bps. ### 15.9 Auto-Baud Support To allow the system to determine baud rates of received characters, the input can be optionally linked to a selected capture input (IC1 for UART1 and IC2 for UART2). To enable this mode, you must program the input capture module to detect the falling and rising edges of the Start bit. ### TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | JCTION SET OVERVIEN Assembly Syntax | Description | # of
Words | # of
Cycle
s | Status Flags
Affected | |--------------------|----------------------|--------|--------------------------------------|--------------------------------------|---------------|--------------------|--------------------------| | 29 | DIV | DIV.S | Wm,Wn | Signed 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.SD | Wm,Wn | Signed 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.U | Wm,Wn | Unsigned 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.UD | Wm,Wn | Unsigned 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | 30 | DIVF | DIVF | Wm,Wn | Signed 16/16-bit Fractional Divide | 1 | 18 | N,Z,C,OV | | 31 | DO | DO | #lit14,Expr | Do code to PC+Expr, lit14+1 times | 2 | 2 | None | | | | DO | Wn,Expr | Do code to PC+Expr, (Wn)+1 times | 2 | 2 | None | | 32 | ED | ED | Wm*Wm,Acc,Wx,Wy,Wxd | Euclidean Distance (no accumulate) | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 33 | EDAC | EDAC | Wm*Wm,Acc,Wx,Wy,Wxd | Euclidean Distance | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 34 | EXCH | EXCH | Wns,Wnd | Swap Wns with Wnd | 1 | 1 | None | | 35 | FBCL | FBCL | Ws,Wnd | Find Bit Change from Left (MSb) Side | 1 | 1 | С | | 36 | FF1L | FF1L | Ws,Wnd | Find First One from Left (MSb) Side | 1 | 1 | С | | 37 | FF1R | FF1R | Ws,Wnd | Find First One from Right (LSb) Side | 1 | 1 | С | | 38 | GOTO | GOTO | Expr | Go to address | 2 | 2 | None | | | | GOTO | Wn | Go to indirect | 1 | 2 | None | | 39 | INC | INC | f | f = f + 1 | 1 | 1 | C,DC,N,OV,Z | | | | INC | f,WREG | WREG = f + 1 | 1 | 1 | C,DC,N,OV,Z | | | | INC | Ws,Wd | Wd = Ws + 1 | 1 | 1 | C,DC,N,OV,Z | | 40 | INC2 | INC2 | f | f = f + 2 | 1 | 1 | C,DC,N,OV,Z | | | | INC2 | f,WREG | WREG = f + 2 | 1 | 1 | C,DC,N,OV,Z | | | | INC2 | Ws,Wd | Wd = Ws + 2 | 1 | 1 | C,DC,N,OV,Z | | 41 | IOR | IOR | f | f = f .IOR. WREG | 1 | 1 | N,Z | | | | IOR | f,WREG | WREG = f .IOR. WREG | 1 | 1 | N,Z | | | | IOR | #lit10,Wn | Wd = lit10 .IOR. Wd | 1 | 1 | N,Z | | | | IOR | Wb,Ws,Wd | Wd = Wb .IOR. Ws | 1 | 1 | N,Z | | | | IOR | Wb,#lit5,Wd | Wd = Wb .IOR. lit5 | 1 | 1 | N,Z | | 42 | LAC | LAC | Wso,#Slit4,Acc | Load Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 43 | LNK | LNK | #lit14 | Link frame pointer | 1 | 1 | None | | 44 | LSR | LSR | f | f = Logical Right Shift f | 1 | 1 | C,N,OV,Z | | | | LSR | f,WREG | WREG = Logical Right Shift f | 1 | 1 | C,N,OV,Z | | | | LSR | Ws,Wd | Wd = Logical Right Shift Ws | 1 | 1 | C,N,OV,Z | | | | LSR | Wb, Wns, Wnd | Wnd = Logical Right Shift Wb by Wns | 1 | 1 | N,Z | | | | LSR | Wb,#lit5,Wnd | Wnd = Logical Right Shift Wb by lit5 | 1 | 1 | N,Z | | 45 | MAC | MAC | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd
,
AWB | Multiply and Accumulate | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | MAC | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd | Square and Accumulate | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 46 | MOV | MOV | f,Wn | Move f to Wn | 1 | 1 | None | | | | MOV | f | Move f to f | 1 | 1 | N,Z | | | | MOV | f,WREG | Move f to WREG | 1 | 1 | N,Z | | | | MOV | #lit16,Wn | Move 16-bit literal to Wn | 1 | 1 | None | | | | MOV.b | #lit8,Wn | Move 8-bit literal to Wn | 1 | 1 | None | | | | MOV | Wn,f | Move Wn to f | 1 | 1 | None | | | | MOV | Wso,Wdo | Move Ws to Wd | 1 | 1 | None | | | | MOV | WREG, f | Move WREG to f | 1 | 1 | N,Z | | | | MOV.D | Wns,Wd | Move Double from W(ns):W(ns+1) to Wd | 1 | 2 | None | | | | MOV.D | Ws,Wnd | Move Double from Ws to W(nd+1):W(nd) | 1 | 2 | None | | 47 | MOVSAC | MOVSAC | Acc, Wx, Wxd, Wy, Wyd, AWB | Prefetch and store accumulator | 1 | 1 | None | # TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycle
s | Status Flags
Affected | |--------------------|----------------------|-------------------------------|-------------------------------------|--|---------------|--------------------|--------------------------| | 48 | MPY | MPY
Wm*Wn,A | cc,Wx,Wxd,Wy,Wyd | Multiply Wm by Wn to Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | MPY
Wm*Wm,A | cc,Wx,Wxd,Wy,Wyd | Square Wm to Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 49 | MPY.N | MPY.N
Wm*Wn,A | cc,Wx,Wxd,Wy,Wyd | -(Multiply Wm by Wn) to Accumulator | | 1 | None | | 50 | MSC | MSC | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd
,
AWB | Multiply and Subtract from Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 51 | MUL | MUL.SS | Wb, Ws, Wnd | {Wnd+1, Wnd} = signed(Wb) * signed(Ws) | 1 | 1 | None | | | | MUL.SU | Wb,Ws,Wnd | {Wnd+1, Wnd} = signed(Wb) * unsigned(Ws) | 1 | 1 | None | | | | MUL.US | Wb,Ws,Wnd | {Wnd+1, Wnd} = unsigned(Wb) * signed(Ws) | 1 | 1 | None | | | | MUL.UU | Wb,Ws,Wnd | {Wnd+1, Wnd} = unsigned(Wb) * unsigned(Ws) | 1 | 1 | None | | | | MUL.SU | Wb,#lit5,Wnd | {Wnd+1, Wnd} = signed(Wb) * unsigned(lit5) | 1 | 1 | None | | | | MUL.UU | Wb,#lit5,Wnd | {Wnd+1, Wnd} = unsigned(Wb) * unsigned(lit5) | 1 | 1 | None | | | | MUL | f | W3:W2 = f * WREG | 1 | 1 | None | | 52 | NEG | NEG | Acc | Negate Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | NEG | f | $f = \overline{f} + 1$ | 1 | 1 | C,DC,N,OV,Z | | | | NEG | f,WREG | WREG = \overline{f} + 1 | 1 | 1 | C,DC,N,OV,Z | | | | NEG | Ws,Wd | $Wd = \overline{Ws} + 1$ | 1 | 1 | C,DC,N,OV,Z | | 53 | NOP | NOP | | No Operation | 1 | 1 | None | | | | NOPR | | No Operation | 1 | 1 | None | | 54 | POP | POP | f | Pop f from top-of-stack (TOS) | 1 | 1 | None | | | | POP | Wdo | Pop from top-of-stack (TOS) to Wdo | 1 | 1 | None | | | | POP.D | Wnd | Pop from top-of-stack (TOS) to W(nd):W(nd+1) | 1 | 2 | None | | | | POP.S | | Pop Shadow Registers | 1 | 1 | All | | 55 | PUSH | PUSH | f | Push f to top-of-stack (TOS) | 1 | 1 | None | | | | PUSH | Wso | Push Wso to top-of-stack (TOS) | 1 | 1 | None | | | | PUSH.D | Wns | Push W(ns):W(ns+1) to top-of-stack (TOS) | 1 | 2 | None | | | | PUSH.S | | Push Shadow Registers | 1 | 1 | None | | 56 | PWRSAV | PWRSAV | #lit1 | Go into Sleep or Idle mode | 1 | 1 | WDTO,Sleep | | 57 | RCALL | RCALL | Expr | Relative Call | 1 | 2 | None | | | | RCALL | Wn | Computed Call | 1 | 2 | None | | 58 | REPEAT | REPEAT | #lit14 | Repeat Next Instruction lit14+1 times | 1 | 1 | None | | | | REPEAT | Wn | Repeat Next Instruction (Wn)+1 times | 1 | 1 | None | | 59 | RESET | RESET | | Software device Reset | 1 | 1 | None | | 60 | RETFIE | RETFIE | | Return from interrupt | 1 | 3 (2) | None | | 61 | RETLW | RETLW | #lit10,Wn | Return with literal in Wn | 1 | 3 (2) | None | | 62 | RETURN | RETURN Return from Subroutine | | Return from Subroutine | 1 | 3 (2) | None | | 63 | RLC | RLC | f | f = Rotate Left through Carry f | 1 | 1 | C,N,Z | | | | RLC | f,WREG | WREG = Rotate Left through Carry f | 1 | 1 | C,N,Z | | | | RLC | Ws,Wd | Wd = Rotate Left through Carry Ws | 1 | 1 | C,N,Z | | 64 | RLNC | RLNC | f | f = Rotate Left (No Carry) f | 1 | 1 | N,Z | | | | RLNC | f,WREG | WREG = Rotate Left (No Carry) f | 1 | 1 | N,Z | | | | RLNC | Ws,Wd | Wd = Rotate Left (No Carry) Ws | 1 | 1 | N,Z | | 65 | RRC | RRC | f | f = Rotate Right through Carry f | 1 | 1 | C,N,Z | | | | RRC | f,WREG | WREG = Rotate Right through Carry f | 1 | 1 | C,N,Z | | | | RRC | Ws,Wd | Wd = Rotate Right through Carry Ws | 1 | 1 | C,N,Z | # 19.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. # 19.3 HI-TECH C for Various Device Families The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms. ### 19.4 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: - Integration into MPLAB IDE projects - User-defined macros to streamline assembly code - Conditional assembly for multi-purpose source files - Directives that allow complete control over the assembly process ### 19.5 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: - Efficient linking of single libraries instead of many smaller files - Enhanced code maintainability by grouping related modules together - Flexible creation of libraries with easy module listing, replacement, deletion and extraction # 19.6 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: - · Support for the entire device instruction set - · Support for fixed-point and floating-point data - · Command line interface - · Rich directive set - · Flexible macro language - MPLAB IDE compatibility ### 20.1 DC Characteristics TABLE 20-1: OPERATING MIPS VS. VOLTAGE | Von Benge | Town Bongs | Max MIPS | | | | | | |-----------|----------------|-----------------|-----------------|--|--|--|--| | VDD Range | Temp Range | dsPIC30FXXX-30I | dsPIC30FXXX-20E | | | | | | 4.5-5.5V | -40°C to 85°C | 30 | _ | | | | | | 4.5-5.5V | -40°C to 125°C | _ | 20 | | | | | | 3.0-3.6V | -40°C to 85°C | 20 | _ | | | | | | 3.0-3.6V | -40°C to 125°C | _ | 15 | | | | | | 2.5-3.0V | -40°C to 85°C | 10 | _ | | | | | ### **TABLE 20-2: THERMAL OPERATING CONDITIONS** | Rating | Symbol | Min | Тур | Max | Unit | |--|--------|---------------|-----|------|------| | dsPIC30F201x-30I
dsPIC30F301x-30I | | | | | | | Operating Junction Temperature Range | TJ | -40 | _ | +125 | °C | | Operating Ambient Temperature Range | TA | -40 | _ | +85 | °C | | dsPIC30F201x-20E
dsPIC30F301x-20E | | | | | | | Operating Junction Temperature Range | TJ | -40 | _ | +150 | °C | | Operating Ambient Temperature Range | TA | -40 | _ | +125 | °C | | Power Dissipation: Internal chip power dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \Sigma I_{OH})$ I/O Pin power dissipation: $P_{I/O} = \Sigma \left(\{V_{DD} - V_{OH}\} \times I_{OH} \right) + \Sigma \left(V_{OL} \times I_{OL} \right)$ | PD | PINT + PI/O V | | | W | | Maximum Allowed Power Dissipation | PDMAX | (7 | W | | | ### **TABLE 20-3: THERMAL PACKAGING CHARACTERISTICS** | Characteristic | Symbol | Тур | Max | Unit | Notes | |---|--------|-----|-----|------|-------| | Package Thermal Resistance, 18-pin PDIP (P) | θЈА | 44 | _ | °C/W | 1 | | Package Thermal Resistance, 18-pin SOIC (SO) | θЈА | 57 | _ | °C/W | 1 | | Package Thermal Resistance, 28-pin SPDIP (SP) | θЈА | 42 | _ | °C/W | 1 | | Package Thermal Resistance, 28-pin (SOIC) | θЈА | 49 | _ | °C/W | 1 | | Package Thermal Resistance, 44-pin QFN | θЈА | 28 | _ | °C/W | 1 | **Note 1:** Junction to ambient thermal resistance, Theta-ja (θJA) numbers are achieved by package simulations. Standard Operating Conditions: 2.5V to 5.5V FIGURE 20-1: LOW-VOLTAGE DETECT CHARACTERISTICS TABLE 20-10: ELECTRICAL CHARACTERISTICS: LVDL | DC CHA | RACTERIS | (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended | | | | | | | |--------------|----------|---|----------------------------|------|-----|------|----------|------------| | Param
No. | Symbol | Characteristic ⁽ | 1) | Min | Тур | Max | Units | Conditions | | LV10 | VPLVD | LVDL Voltage on VDD transition high-to-low | LVDL = 0000 ⁽²⁾ | _ | 1 | _ | \ | | | | | | LVDL = 0001 ⁽²⁾ | _ | 1 | l | V | | | | | | LVDL = 0010 ⁽²⁾ | _ | | _ | V | | | | | | LVDL = 0011 ⁽²⁾ | _ | _ | _ | V | | | | | | LVDL = 0100 | 2.50 | - | 2.65 | V | | | | | | LVDL = 0101 | 2.70 | 1 | 2.86 | V | | | | | | LVDL = 0110 | 2.80 | - | 2.97 | V | | | | | | LVDL = 0111 | 3.00 | - | 3.18 | V | | | | | | LVDL = 1000 | 3.30 | _ | 3.50 | V | | | | | | LVDL = 1001 | 3.50 | _ | 3.71 | V | | | | | | LVDL = 1010 | 3.60 | - | 3.82 | V | | | | | | LVDL = 1011 | 3.80 | _ | 4.03 | V | | | | | | LVDL = 1100 | 4.00 | _ | 4.24 | V | | | | | | LVDL = 1101 | 4.20 | | 4.45 | V | | | | | | LVDL = 1110 | 4.50 | _ | 4.77 | V | | LVDL = 1111 Note 1: These parameters are characterized but not tested in manufacturing. **2:** These values not in usable operating range. threshold voltage External LVD input pin VLVDIN LV15 TABLE 20-12: DC CHARACTERISTICS: PROGRAM AND EEPROM | DC CHARACTERISTICS | | | Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) | | | | | | | | |--------------------|---------|-------------------------------------|---|--------------------|---------|-------|--|--|--|--| | DC CHA | RACIERI | SIICS | Operati | ing temp | erature | | ≤TA ≤+85°C for Industrial
≤TA ≤+125°C for Extended | | | | | Param
No. | Symbol | Characteristic | Min | Typ ⁽¹⁾ | Max | Units | Conditions | | | | | | | Data EEPROM Memory ⁽²⁾ | | | | | | | | | | D120 | ED | Byte Endurance | 100K | 1M | | E/W | -40° C ≤TA ≤+85°C | | | | | D121 | VDRW | VDD for Read/Write | VMIN | _ | 5.5 | V | Using EECON to Read/Write VMIN = Minimum operating voltage | | | | | D122 | TDEW | Erase/Write Cycle Time | 0.8 | 2 | 2.6 | ms | RTSP | | | | | D123 | TRETD | Characteristic Retention | 40 | 100 | _ | Year | Provided no other specifications are violated | | | | | D124 | IDEW | IDD During Programming | _ | 10 | 30 | mA | Row Erase | | | | | | | Program Flash Memory ⁽²⁾ | | | | | | | | | | D130 | ЕР | Cell Endurance | 10K | 100K | _ | E/W | -40° C ≤TA ≤+85°C | | | | | D131 | VPR | VDD for Read | VMIN | _ | 5.5 | V | VMIN = Minimum operating voltage | | | | | D132 | VEB | VDD for Bulk Erase | 4.5 | _ | 5.5 | V | | | | | | D133 | VPEW | VDD for Erase/Write | 3.0 | _ | 5.5 | V | | | | | | D134 | TPEW | Erase/Write Cycle Time | 0.8 | 2 | 2.6 | ms | RTSP | | | | | D135 | TRETD | Characteristic Retention | 40 | 100 | _ | Year | Provided no other specifications are violated | | | | | D137 | IPEW | IDD During Programming | _ | 10 | 30 | mA | Row Erase | | | | | D138 | lев | IDD During Programming | | 10 | 30 | mA | Bulk Erase | | | | **Note 1:** Data in "Typ" column is at 5V, 25°C unless otherwise stated. ^{2:} These parameters are characterized but not tested in manufacturing. FIGURE 20-18: I²C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) FIGURE 20-19: I²C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) TABLE 20-34: I²C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) | AC CHARACTERISTICS | Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) | |--------------------|---| | AC CHARACTERISTICS | Operating temperature -40°C ≤TA ≤+85°C for Industrial | | | -40°C ≤TA ≤+125°C for Extended | | Param
No. | Symbol | Charac | teristic | Min | Max | Units | Conditions | |--------------|---------|--------------------------|---------------------------|-------------|------|-------|---| | IS10 | TLO:SCL | Clock Low Time | 100 kHz mode | 4.7 | _ | μs | Device must operate at a minimum of 1.5 MHz | | | | | 400 kHz mode | 1.3 | _ | μs | Device must operate at a minimum of 10 MHz. | | | | | 1 MHz mode ⁽¹⁾ | 0.5 | | μs | | | IS11 | THI:SCL | Clock High Time | 100 kHz mode | 4.0 | _ | μs | Device must operate at a minimum of 1.5 MHz | | | | | 400 kHz mode | 0.6 | _ | μs | Device must operate at a minimum of 10 MHz | | | | | 1 MHz mode ⁽¹⁾ | 0.5 | _ | μs | | | IS20 | TF:SCL | SDA and SCL | 100 kHz mode | _ | 300 | ns | CB is specified to be from | | | | Fall Time | 400 kHz mode | 20 + 0.1 CB | 300 | ns | 10 to 400 pF | | | | | 1 MHz mode ⁽¹⁾ | _ | 100 | ns | | | IS21 | TR:SCL | SDA and SCL
Rise Time | 100 kHz mode | _ | 1000 | ns | CB is specified to be from | | | | | 400 kHz mode | 20 + 0.1 CB | 300 | ns | 10 to 400 pF | | | | | 1 MHz mode ⁽¹⁾ | _ | 300 | ns | | **Note 1:** Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only). ### TABLE 20-34: 1²C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED) Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended | | 1 | 1 | -40 C SIA S+125 C IOI Exterided | | | | | |--------------|-----------------|-------------------------------|---------------------------------|------|------|-------|-----------------------------| | Param
No. | Symbol Characte | | teristic | Min | Max | Units | Conditions | | IS25 | TSU:DAT | Data Input
Setup Time | 100 kHz mode | 250 | _ | ns | | | | | | 400 kHz mode | 100 | _ | ns | | | | | | 1 MHz mode ⁽¹⁾ | 100 | _ | ns | | | IS26 | THD:DAT | Data Input
Hold Time | 100 kHz mode | 0 | _ | ns | | | | | | 400 kHz mode | 0 | 0.9 | μs | | | | | | 1 MHz mode ⁽¹⁾ | 0 | 0.3 | μs | | | IS30 | Tsu:sta | Start Condition
Setup Time | 100 kHz mode | 4.7 | _ | μs | Only relevant for Repeated | | | | | 400 kHz mode | 0.6 | _ | μs | Start condition | | | | | 1 MHz mode ⁽¹⁾ | 0.25 | _ | μs | | | IS31 | THD:STA | Start Condition
Hold Time | 100 kHz mode | 4.0 | _ | μs | After this period the first | | | | | 400 kHz mode | 0.6 | _ | μs | clock pulse is generated | | | | | 1 MHz mode ⁽¹⁾ | 0.25 | _ | μs | | | IS33 | Tsu:sto | Stop Condition
Setup Time | 100 kHz mode | 4.7 | _ | μs | | | | | | 400 kHz mode | 0.6 | _ | μs | | | | | | 1 MHz mode ⁽¹⁾ | 0.6 | _ | μs | | | IS34 | THD:STO | Stop Condition
Hold Time | 100 kHz mode | 4000 | _ | ns | | | | | | 400 kHz mode | 600 | _ | ns | | | | | | 1 MHz mode ⁽¹⁾ | 250 | | ns | | | IS40 | TAA:SCL | Output Valid
From Clock | 100 kHz mode | 0 | 3500 | ns | | | | | | 400 kHz mode | 0 | 1000 | ns | | | | | | 1 MHz mode ⁽¹⁾ | 0 | 350 | ns | | | IS45 | TBF:SDA | Bus Free Time | 100 kHz mode | 4.7 | _ | μs | Time the bus must be free | | | | | 400 kHz mode | 1.3 | _ | μs | before a new transmission | | | | | 1 MHz mode ⁽¹⁾ | 0.5 | | μs | can start | | IS50 | Св | Bus Capacitive
Loading | | _ | 400 | pF | | **Note 1:** Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only). TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended | | | | | | | |--------------------|-----------|--|---|--------------------|----------------------------------|----------|---|--|--| | Param
No. | Symbol | Characteristic | Min. | Тур | Max. | Units | Conditions | | | | Device Supply | | | | | | | | | | | AD01 | AVDD | Module VDD Supply | Greater of
VDD - 0.3
or 2.7 | _ | Lesser of
VDD + 0.3
or 5.5 | V | | | | | AD02 | AVss | Module Vss Supply | Vss - 0.3 | _ | Vss + 0.3 | V | | | | | Reference Inputs | | | | | | | | | | | AD05 | VREFH | Reference Voltage High | AVss + 2.7 | _ | AVDD | V | | | | | AD06 | VREFL | Reference Voltage Low | AVss | _ | AVDD - 2.7 | V | | | | | AD07 | VREF | Absolute Reference
Voltage | AVss - 0.3 | _ | AVDD + 0.3 | V | | | | | AD08 | IREF | Current Drain | | 200
.001 | 300
2 | μA
μA | A/D operating
A/D off | | | | Analog Input | | | | | | | | | | | AD10 | VINH-VINL | Full-Scale Input Span | VREFL | | VREFH | V | See Note 1 | | | | AD11 | VIN | Absolute Input Voltage | AVss - 0.3 | | AVDD + 0.3 | V | _ | | | | AD12 | _ | Leakage Current | _ | ±0.001 | ±0.610 | μА | VINL = AVSS = VREFL = $0V$, AVDD = VREFH = $5V$ Source Impedance = $2.5 \text{ k}\Omega$ | | | | AD13 | _ | Leakage Current | _ | ±0.001 | ±0.610 | μΑ | VINL = AVSS = VREFL = $0V$, AVDD = VREFH = $3V$ Source Impedance = $2.5 \text{ k}\Omega$ | | | | AD15 | Rss | Switch Resistance | _ | 3.2K | _ | Ω | | | | | AD16 | CSAMPLE | Sample Capacitor | | 18 | | pF | | | | | AD17 | RIN | Recommended Impedance of Analog Voltage Source | | _ | 2.5K | Ω | | | | | | | | DC Accur | acy ⁽²⁾ | | | | | | | AD20 | Nr | Resolution | 12 data bits | | bits | | | | | | AD21 | INL | Integral Nonlinearity | _ | _ | <±1 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V | | | | AD21A | INL | Integral Nonlinearity | _ | _ | <±1 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V | | | | AD22 | DNL | Differential Nonlinearity | _ | _ | <±1 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V | | | | AD22A | DNL | Differential Nonlinearity | _ | _ | <±1 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V | | | | AD23 | GERR | Gain Error | +1.25 | +1.5 | +3 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V | | | | AD23A | GERR | Gain Error | +1.25 | +1.5 | +3 | LSb | VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V | | | **Note 1:** The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes. ^{2:} Measurements taken with external VREF+ and VREF- used as the ADC voltage references. ### 18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |--------------------------|------------------|-------------|----------|------|--| | Dimens | Dimension Limits | | NOM | MAX | | | Number of Pins | N | | | | | | Pitch | е | | 1.27 BSC | | | | Overall Height | Α | - | _ | 2.65 | | | Molded Package Thickness | A2 | 2.05 | _ | _ | | | Standoff § | A1 | 0.10 | _ | 0.30 | | | Overall Width | Е | 10.30 BSC | | | | | Molded Package Width | E1 | 7.50 BSC | | | | | Overall Length | D | 11.55 BSC | | | | | Chamfer (optional) | h | 0.25 | _ | 0.75 | | | Foot Length | L | 0.40 | _ | 1.27 | | | Footprint | L1 | 1.40 REF | | | | | Foot Angle | ф | 0° | _ | 8° | | | Lead Thickness | С | 0.20 | _ | 0.33 | | | Lead Width | b | 0.31 | _ | 0.51 | | | Mold Draft Angle Top | α | 5° | | 15° | | | Mold Draft Angle Bottom | β | 5° | _ | 15° | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-051B ### 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |------------------------|------------------|-------------|----------|------|--| | | Dimension Limits | MIN | NOM | MAX | | | Number of Pins | N | | 44 | | | | Pitch | е | 0.65 BSC | | | | | Overall Height | А | 0.80 | 0.90 | 1.00 | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | Contact Thickness | A3 | | 0.20 REF | | | | Overall Width | E | 8.00 BSC | | | | | Exposed Pad Width | E2 | 6.30 | 6.45 | 6.80 | | | Overall Length | D | | 8.00 BSC | | | | Exposed Pad Length | D2 | 6.30 | 6.45 | 6.80 | | | Contact Width | b | 0.25 | 0.30 | 0.38 | | | Contact Length | L | 0.30 | 0.40 | 0.50 | | | Contact-to-Exposed Pad | | 0.20 | - | - | | ### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-103B ### 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging MILLIMETERS Units NOM **Dimension Limits** MIN MAX Contact Pitch Ε 0.65 BSC Optional Center Pad Width W2 6.80 Optional Center Pad Length T2 6.80 Contact Pad Spacing C1 8.00 C2 Contact Pad Spacing 8.00 Contact Pad Width (X44) X1 0.35 Contact Pad Length (X44) Y1 0.80 Distance Between Pads 0.25 G #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2103A