

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2012-30i-so

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC30F2011/2012/3012/3013 Sensor Family

_ .	i.	Prog	ram Memory	SRAM	EEPROM	Timer	Input	Output	A/D 12-bit	RТ	Ы	M
Device	Pins	Bytes Instructions Bytes		Bytes	Sytes Bytes 1		Ċap	PWM	200 Ksps	UAI	SF	I²C
dsPIC30F2011	18	12K	4K	1024	-	3	2	2	8 ch	1	1	1
dsPIC30F3012	18	24K	8K	2048	1024	3	2	2	8 ch	1	1	1
dsPIC30F2012	28	12K	4K	1024	-	3	2	2	10 ch	1	1	1
dsPIC30F3013	28	24K	8K	2048	1024	3	2	2	10 ch	2	1	1

Pin Diagrams

Pin Nam	e	Pin Type	Buffer Type	Description
SCL SDA		I/O I/O	ST ST	Synchronous serial clock input/output for I ² C™. Synchronous serial data input/output for I ² C.
SOSCO SOSCI		0 1		32 kHz low-power oscillator crystal output. 32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
T1CK T2CK			ST ST	Timer1 external clock input. Timer2 external clock input.
U1RX U1TX		 0	ST —	UART1 Receive. UART1 Transmit.
U1ARX U1ATX		I O	ST —	UART1 Alternate Receive. UART1 Alternate Transmit.
U2RX U2TX		I O	ST —	UART2 Receive. UART2 Transmit.
Vdd		Р	—	Positive supply for logic and I/O pins.
Vss		Р		Ground reference for logic and I/O pins.
VREF+		Ι	Analog	Analog Voltage Reference (High) input.
Vref-		Ι	Analog	Analog Voltage Reference (Low) input.
Legend:	CM0 ST	OS = = =	CMOS compatik Schmitt Trigger Input	le input or output Analog = Analog input input with CMOS levels O = Output P = Power

ΤΔ RI E 1-1·	PINOUT I/O DESCRIPTIONS	١
IADLE I-I.	FINUUT I/U DESCRIFTIUNS	,

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words.

3.2.5 NEAR DATA SPACE

An 8 Kbyte near data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support memory direct addressing with a 16-bit address field.

3.2.6 SOFTWARE STACK

The dsPIC DSC devices contain a software stack. W15 is used as the Stack Pointer.

The Stack Pointer always points to the first available free word and grows from lower addresses towards higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-10. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSB of the PC prior to the push.

There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned. Whenever an Effective Address (EA) is generated using W15 as a source or destination pointer, the address thus generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800, thus preventing the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

TABLE 3-3: CORE REGISTER MAP

SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
W0	0000								W0/WR	G								0000 0000 0000 0000
W1	0002								W1									0000 0000 0000 0000
W2	0004								W2									0000 0000 0000 0000
W3	0006								W3									0000 0000 0000 0000
W4	0008								W4									0000 0000 0000 0000
W5	000A								W5									0000 0000 0000 0000
W6	000C								W6									0000 0000 0000 0000
W7	000E								W7									0000 0000 0000 0000
W8	0010								W8									0000 0000 0000 0000
W9	0012								W9									0000 0000 0000 0000
W10	0014								W10									0000 0000 0000 0000
W11	0016								W11									0000 0000 0000 0000
W12	0018		W12 00									0000 0000 0000 0000						
W13	001A		W13 00										0000 0000 0000 0000					
W14	001C								W14									0000 0000 0000 0000
W15	001E								W15									0000 1000 0000 0000
SPLIM	0020								SPLIN									0000 0000 0000 0000
ACCAL	0022								ACCA	-								0000 0000 0000 0000
ACCAH	0024								ACCA	4								0000 0000 0000 0000
ACCAU	0026			Sign E	xtension (ACCA<39	l>)						ACC	AU				0000 0000 0000 0000
ACCBL	0028								ACCB	_								0000 0000 0000 0000
ACCBH	002A								ACCB	4								0000 0000 0000 0000
ACCBU	002C			Sign E	xtension (ACCB<39	l>)						ACC	BU				0000 0000 0000 0000
PCL	002E								PCL									0000 0000 0000 0000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000 0000 0000 0000
TBLPAG	0032	_	_	_	_	_	_	_	_				TBLP	AG				0000 0000 0000 0000
PSVPAG	0034	_	_	_	_	_	_	_	_				PSVF	PAG				0000 0000 0000 0000
RCOUNT	0036	RCOUNT									uuuu uuuu uuuu uuuu							
DCOUNT	0038	DCOUNT								uuuu uuuu uuuu uuuu								
DOSTARTL	003A							DC	STARTL								0	uuuu uuuu uuuu uuu0
DOSTARTH	003C	—	—	—	—	—	—	_	—	_			DC	OSTARTH				0000 0000 0uuu uuuu
DOENDL	003E							D	OENDL								0	uuuu uuuu uuuu uuu0
DOENDH	0040	—	—	—	—	—	—	_	—	_			D	OENDH				0000 0000 0uuu uuuu
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "*dsPIC30F Family Reference Manual*" (DS70046) for descriptions of register bit fields.

EXAMPLE 6-5: DATA EEPROM BLOCK WRITE

MOV	<pre>#LOW_ADDR_WORD,W0</pre>	; Init pointer
MOV	#HIGH_ADDR_WORD,W1	
MOV	W1,TBLPAG	
MOV	#data1,W2	; Get 1st data
TBLWTL	W2 [W0]++	; write data
MOV	#data2,W2	; Get 2nd data
TBLWTL	W2 [W0]++	; write data
MOV	#data3,W2	; Get 3rd data
TBLWTL	W2 [W0]++	; write data
MOV	, #data4,W2	; Get 4th data
TBLWTL	W2 [W0]++	; write data
MOV	, #data5,W2	; Get 5th data
TBLWTL	W2 [W0]++	; write data
MOV	#data6,W2	; Get 6th data
TBLWTL	W2 [W0]++	; write data
MOV	#data7,W2	; Get 7th data
TBLWTL	W2 [W0]++	; write data
MOV	#data8.W2	; Get 8th data
TRIWTI.	W2 [W0]++	; write data
MOV	#data9.W2	; Get 9th data
TBLWTL	W2 [W0]++	; write data
MOV	#data10 W2	; Get 10th data
TRLWTL	$W_{2} [W_{0}] + +$; write data
MOV	#datal1 W2	; Get 11th data
TRIWTT		; write data
MOV	WZ_{1} WO_{1}	: Cet 12th data
TRIWTT		; write data
MOM	$WZ_{1} WO_{1}$: Cet 13th data
	$W_2 [W_0]_{++}$; write data
MOM	$WZ_{1} = WO_{1}$: Cet 14th data
	m_{α}	, veito data
IBLWIL	$WZ_{j}[WO]^{++}$, will uala
	m_{α}	, veito data
IBLWIL	$WZ_{j}[WO] + +$, Wille Udid
	HOALAID,WZ	, Get Ioth uata
IBLWIL	W2,[W0]++	, write data. The NVMADE captures last table access address
MOV	#UX400A,WU	, Select data EEPROM for multi word op
MOV	WU NVMCON	i Operate Key to allow program operation
DISI	#5	; Block all interrupts with priority for</td
MOL		, next 5 instructions
MON	#UX55,WU	· Muite the Out - here
MON	WU NVMKEY	, write the UX55 Key
MON	#UXAA,W⊥	
MOV	W1 NVMKEY	; Write the UXAA key
BSET	NVMCON, #WR	; Start write cycle
NOP		
NOP		

6.4 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

6.5 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared; also, the Power-up Timer prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

7.0 **I/O PORTS**

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU. peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

All of the device pins (except VDD, Vss, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.

All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

7.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the port pins, write the latch (LATx).

Any bit and its associated data and Control registers that are not valid for a particular device are disabled. That means the corresponding LATx and TRISx registers and the port pin read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

A parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 7-1 illustrates how ports are shared with other peripherals and the associated I/O cell (pad) to which they are connected.

The format of the registers for the shared ports, (PORTB, PORTC, PORTD and PORTF) are shown in Table 7-1 through Table 7-6.

Note: The actual bits in use vary between devices.

FIGURE 7-1: **BLOCK DIAGRAM OF A SHARED PORT STRUCTURE**

Address Error Trap:

This trap is initiated when any of the following circumstances occurs:

- 1. A misaligned data word access is attempted.
- 2. A data fetch from our unimplemented data memory location is attempted.
- 3. A data access of an unimplemented program memory location is attempted.
- 4. An instruction fetch from vector space is attempted.

Note: In the MAC class of instructions, wherein the data space is split into X and Y data space, unimplemented X space includes all of Y space, and unimplemented Y space includes all of X space.

- 5. Execution of a "BRA #literal" instruction or a "GOTO #literal" instruction, where literal is an unimplemented program memory address.
- 6. Executing instructions after modifying the PC to point the unimplemented program memory addresses. The PC may be modified by loading a value into the stack and executing a RETURN instruction.

Stack Error Trap:

This trap is initiated under the following conditions:

- The Stack Pointer is loaded with a value which is greater than the (user programmable) limit value written into the SPLIM register (stack overflow).
- The Stack Pointer is loaded with a value which is less than 0x0800 (simple stack underflow).

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup.

8.3.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the fixed priority shown in Figure 8-2 is implemented, which may require the user to check if other traps are pending, in order to completely correct the Fault.

Soft traps include exceptions of priority level 8 through level 11, inclusive. The arithmetic error trap (level 11) falls into this category of traps.

Hard traps include exceptions of priority level 12 through level 15, inclusive. The address error (level 12), stack error (level 13) and oscillator error (level 14) traps fall into this category.

Each hard trap that occurs must be acknowledged before code execution of any type can continue. If a lower priority hard trap occurs while a higher priority trap is pending, acknowledged, or is being processed, a hard trap conflict occurs.

The device is automatically Reset in a hard trap conflict condition. The TRAPR Status bit (RCON<15>) is set when the Reset occurs, so that the condition may be detected in software.

11.0 INPUT CAPTURE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

This section describes the input capture module and associated operational modes. The features provided by this module are useful in applications requiring frequency (period) and pulse measurement.

Figure 11-1 depicts a block diagram of the input capture module. Input capture is useful for such modes as:

- Frequency/Period/Pulse Measurements
- · Additional Sources of External Interrupts

Important operational features of the input capture module are:

- Simple Capture Event mode
- Timer2 and Timer3 mode selection
- · Interrupt on input capture event

These operating modes are determined by setting the appropriate bits in the IC1CON and IC2CON registers. The dsPIC30F2011/2012/3012/3013 devices have two capture channels.

11.1 Simple Capture Event Mode

The simple capture events in the dsPIC30F product family are:

- Capture every falling edge
- Capture every rising edge
- Capture every 4th rising edge
- · Capture every 16th rising edge
- · Capture every rising and falling edge

These simple Input Capture modes are configured by setting the appropriate bits, ICM<2:0> (ICxCON<2:0>).

11.1.1 CAPTURE PRESCALER

There are four input capture prescaler settings specified by bits ICM<2:0> (ICxCON<2:0>). Whenever the capture channel is turned off, the prescaler counter is cleared. In addition, any Reset clears the prescaler counter.

FIGURE 11-1: INPUT CAPTURE MODE BLOCK DIAGRAM⁽¹⁾

NOTES:

TABLE 15-1: UART1 REGISTER MAP FOR dsPIC30F2011/2012/3012/3013

Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Rese	et State	
020C	UARTEN	—	USIDL	—	—	ALTIO	_		WAKE	LPBACK	ABAUD	—	—	PDSEL1	PDSEL0	STSEL	0000 0000	0 0000 0	000
020E	UTXISEL	—	_	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000 0003	0001 0	000
0210		—	_	—	-	-		UTX8			Tr	ansmit R	egister				0000 0001	uuuu u	uuu
0212		—	_	—	-	-		URX8			R	eceive Re	egister				0000 0000	0 0000 0	000
0214							Bai	ud Rate Ge	enerator Pres	caler							0000 0000	0 0000 0	000
	Addr. 020C 020E 0210 0212 0214	Addr. Bit 15 020C UARTEN 020E UTXISEL 0210 0212 0214	Addr. Bit 15 Bit 14 020C UARTEN 020E UTXISEL 0210 0212 0214	Addr. Bit 15 Bit 14 Bit 13 020C UARTEN USIDL 020E UTXISEL 0210 0212 0214	Addr. Bit 15 Bit 14 Bit 13 Bit 12 020C UARTEN USIDL 020E UTXISEL 0210 0212 0214	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 020C UARTEN USIDL 020E UTXISEL UTXBRK 0210 0212 0214	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0200 UARTEN USIDL ALTIO 0202 UTXISEL UTXBRK UTXEN 0201 0210 0212 0214	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0200 UARTEN USIDL ALTIO 0201 UTXISEL UTXBRK UTXEN UTXBF 0210 UTXBRK UTXEN UTXBF 0212 0214 Bat	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0200 UARTEN - USIDL - ALTIO - - 0202 UTXISEL - - UTXBRK UTXEN UTXBF TRMT 0210 - - - - - - - 0210 - - - - - - - - 0210 - - - - - - - - - - 0210 - - - - - - - UTX8 - - - UTX8 - - - UTX8 - - - - UTX8 - - - - - UTX8 - - - - - - - - - - - UTX8 - -	Addr. Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0200 UARTEN - USIDL - ALTIO - - WAKE 0202 UTXISEL - - UTXBRK UTXEN 0- - WAKE 0204 UTXISEL - - - UTXBRK UTXEN UTXBF TRMT URXISEL1 0210 - - - - - - UTXISEL - - - - - WAKE 0210 -	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60200UARTENUSIDLALTIOWAKELPBACK0202UTXISELUTXBRKUTXENUTXBFTRMTURXISEL1URXISEL00210UTXBUTXBUTXB0212URX8URX8UTXB0214URX8UTXB	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50200UARTENUSIDLALTIOWAKELPBACKABAUD0201UTXISELUTXBRKUTXENUTXBFTRMTURXISEL1URXISEL0ADDEN0210UTXBTRMTURXISEL1URXISEL0ADDEN0212UTX8UTX8UTX80214URX8UTX8VV	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 40200UARTENUSIDLALTIOVARELPBACKABAUD0201UTXISELUTXBRKUTXENUTXBFTRMTURXISEL1URXISEL0ADDENRIDLE0210UTXBUTXBUTXBUTXBUTXBUTXBUTXB0212UTXBUTXBUTXBUTXBUTXBUTXB0214UTXTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30200UARTENVSIDLALTIOWAKELPBACKABAUD0201UTXISELUTXBRKUTXENUTXBFTRMTURXISELURXISELADDENRIDEPERR0210UTX8UTX8UTX8UTX8UTX8UTX8VERNE0212UTX8URX8UTX8UTX8UTX8VERNE0214UTX8UTX8UTX8UTX8UTX8VERNE	Addr.Bit 10Bit 12Bit 12Bit 10Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 20200UARTENVSIDLALTIOWAKELPBACKABAUDPDSEL10202UTXISELUTXBKKUTXENUTXENTRMTURXISEL1URXISEL0ADDENRDLEPERRFERR0210UTX8UTX8UTX8UTX8UTX8UTX8VERNEADDENRDLEPERR0212UTX8UTX8UTX8UTX8UTX8UTX8UTX8UTX80214UTUTX8UTX8UTX8UTX8UTX8UTX8UTX8	Addr.Bit 10Bit 12Bit 12Bit 10Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 100200UARTENVSIDLALTIOWAKELPBACKABAUDPDSEL1PDSEL00201UTXISELUTXBRKUTXENUTXENTRMTURXISEL1VRXISEL1ADDENRIDLEPERRFERROERR0210UTX8UTX8UTX8UTX8UTX8VERVEVERVEVERVE0212UTX8UTX8UTX8VERVEVERVEVERVEVERVE0214UETVEUETVEVERVEVERVEVERVEVERVEVERVE	Addr.Bit 1Bit 1Bit 1Bit 1Bit 1Bit 1Bit 1Bit 9Bit 3Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0 0000 UARTEN-VISULALTIOWAKELPBACKABAUDPDSEL1PDSEL0STSEL 0000 UTXISELUTXBKKUTXENUTXBFTRMTURXISEL0VRXISEL0ADDENRIDEPERRFERR0ERRURXDR 0210 UTXBUTXBUTXBUTXBUTXBUTXBVITX	Addr.Bit 1Bit 1 <th< td=""><td>Addr.Bit 1Bit 1<th< td=""></th<></td></th<>	Addr.Bit 1Bit 1 <th< td=""></th<>

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

TABLE 15-2: UART2 REGISTER MAP FOR dsPIC30F3013⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	State	
U2MODE	0216	UARTEN	—	USIDL	—	—	—	_	—	WAKE	LPBACK	ABAUD	_	_	PDSEL1	PDSEL0	STSEL	0000 0000	0000 0	000
U2STA	0218	UTXISEL	—	_	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000 0001	0001 0	000
U2TXREG	021A	_	—	_	_	_	—	-	UTX8			Tr	ansmit Re	egister				0000 000u	uuuu u	uuu
U2RXREG	021C	_	—	_	_	_	—	-	URX8			R	eceive Re	gister				0000 0000	0000 0	000
U2BRG	021E							E	Baud Rate	Generator Pr	escaler							0000 0000	0000 0	000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: UART2 is not available on dsPIC30F2011/2012/3012 devices.

2: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

16.1 A/D Result Buffer

The module contains a 16-word dual port read-only buffer, called ADCBUF0...ADCBUFF, to buffer the A/D results. The RAM is 12 bits wide but the data obtained is represented in one of four different 16-bit data formats. The contents of the sixteen A/D Conversion Result Buffer registers, ADCBUF0 through ADCBUFF, cannot be written by user software.

16.2 Conversion Operation

After the ADC module has been configured, the sample acquisition is started by setting the SAMP bit. Various sources, such as a programmable bit, timer time-outs and external events, will terminate acquisition and start a conversion. When the A/D conversion is complete, the result is loaded into ADCBUF0...ADCBUFF, and the DONE bit and the A/D interrupt flag, ADIF, are set after the number of samples specified by the SMPI bit. The ADC module can be configured for different interrupt rates as described in Section 16.3 "Selecting the Conversion Sequence".

The following steps should be followed for doing an A/D conversion:

- 1. Configure the ADC module:
 - Configure analog pins, voltage reference and digital I/O
 - Select A/D input channels
 - Select A/D conversion clock
 - Select A/D conversion trigger
 - Turn on ADC module
- 2. Configure A/D interrupt (if required):
 - Clear ADIF bit
 - Select A/D interrupt priority
- 3. Start sampling
- 4. Wait the required acquisition time
- 5. Trigger acquisition end, start conversion
- 6. Wait for A/D conversion to complete, by either:
 - Waiting for the A/D interrupt, or
 - Waiting for the DONE bit to get set
- 7. Read A/D result buffer; clear ADIF if required

16.3 Selecting the Conversion Sequence

Several groups of control bits select the sequence in which the A/D connects inputs to the sample/hold channel, converts a channel, writes the buffer memory and generates interrupts.

The sequence is controlled by the sampling clocks.

The SMPI bits select the number of acquisition/conversion sequences that would be performed before an interrupt occurs. This can vary from 1 sample per interrupt to 16 samples per interrupt.

The BUFM bit will split the 16-word results buffer into two 8-word groups. Writing to the 8-word buffers will be alternated on each interrupt event.

Use of the BUFM bit will depend on how much time is available for the moving of the buffers after the interrupt.

If the processor can quickly unload a full buffer within the time it takes to acquire and convert one channel, the BUFM bit can be '0' and up to 16 conversions (corresponding to the 16 input channels) may be done per interrupt. The processor will have one acquisition and conversion time to move the sixteen conversions.

If the processor cannot unload the buffer within the acquisition and conversion time, the BUFM bit should be '1'. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111, then eight conversions will be loaded into 1/2 of the buffer, following which an interrupt occurs. The next eight conversions will be loaded into the other 1/2 of the buffer. The processor will have the entire time between interrupts to move the eight conversions.

The ALTS bit can be used to alternate the inputs selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and MUX B. If the ALTS bit is '0', only the MUX A inputs are selected for sampling. If the ALTS bit is '1' and SMPI<3:0> = 0000 on the first sample/convert sequence, the MUX A inputs are selected and on the next acquire/convert sequence, the MUX B inputs are selected.

The CSCNA bit (ADCON2<10>) will allow the multiplexer input to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is '1', the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused.

TABLE 16-2: A/D CONVERTER REGISTER MAP FOR dsPIC30F2011/3012	TABLE 16-2:	A/D CONVERTER	REGISTER MAP	FOR dsPIC30F2011/3012
--	-------------	---------------	---------------------	-----------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
ADCBUF0	0280	_	—	—	—						ADC Dat	ta Buffer 0						0000 uuuu uuuu uuuu
ADCBUF1	0282		—	—	—						ADC Dat	ta Buffer 1						0000 uuuu uuuu uuuu
ADCBUF2	0284		—	—	—						ADC Dat	ta Buffer 2						0000 uuuu uuuu uuuu
ADCBUF3	0286		—	—	—						ADC Dat	ta Buffer 3						0000 uuuu uuuu uuuu
ADCBUF4	0288		—	—	—						ADC Dat	ta Buffer 4						0000 uuuu uuuu uuuu
ADCBUF5	028A		—	—	—						ADC Dat	ta Buffer 5						0000 uuuu uuuu uuuu
ADCBUF6	028C		—	—	—						ADC Dat	ta Buffer 6						0000 uuuu uuuu uuuu
ADCBUF7	028E		—	—	—						ADC Dat	ta Buffer 7						0000 uuuu uuuu uuuu
ADCBUF8	0290		—	—	—						ADC Dat	ta Buffer 8						0000 uuuu uuuu uuuu
ADCBUF9	0292	_	_	_	_						ADC Dat	ta Buffer 9						0000 uuuu uuuu uuuu
ADCBUFA	0294	_	_	_	_						ADC Data	a Buffer 10)					0000 uuuu uuuu uuuu
ADCBUFB	0296	_	_	_	_						ADC Data	a Buffer 1'	1					0000 uuuu uuuu uuuu
ADCBUFC	0298	_	_	_	_						ADC Data	a Buffer 12	2					0000 uuuu uuuu uuuu
ADCBUFD	029A	_	_	_	_						ADC Data	a Buffer 13	3					0000 uuuu uuuu uuuu
ADCBUFE	029C	_	_	_	_						ADC Data	a Buffer 14	1					0000 uuuu uuuu uuuu
ADCBUFF	029E	_	_	_	_						ADC Data	a Buffer 18	5					0000 uuuu uuuu uuuu
ADCON1	02A0	ADON	_	ADSIDL	_	_	_	FORM	1<1:0>	5	SRC<2:0	>	_	—	ASAM	SAMP	DONE	0000 0000 0000 0000
ADCON2	02A2	V	/CFG<2:0>	>	_	_	CSCNA	_	_	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000 0000 0000 0000
ADCON3	02A4	_	_	_		SA	SAMC<4:0> ADRC — ADCS<5:0> 0						0000 0000 0000 0000					
ADCHS	02A6	_	—	_	CH0NB	CH0SB<3:0> CH0NA CH0SA<3:0> 0						0000 0000 0000 0000						
ADPCFG	02A8	—				_				PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000
ADCSSL	02AA	—	—	—	—	—	—	—	—	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

17.2 Oscillator Configurations

17.2.1 INITIAL CLOCK SOURCE SELECTION

While coming out of Power-on Reset or Brown-out Reset, the device selects its clock source based on:

- a) FOS<2:0> Configuration bits that select one of four oscillator groups,
- b) and FPR<4:0> Configuration bits that select one of 15 oscillator choices within the primary group.

The selection is as shown in Table 17-2.

17.2.2 OSCILLATOR START-UP TIMER (OST)

In order to ensure that a crystal oscillator (or ceramic resonator) has started and stabilized, an Oscillator Start-up Timer is included. It is a simple 10-bit counter that counts 1024 Tosc cycles before releasing the oscillator clock to the rest of the system. The time-out period is designated as Tost.

The TOST time is involved every time the oscillator has to restart (i.e., on POR, BOR and wake-up from Sleep). The Oscillator Start-up Timer is applied to the LP oscillator, XT, XTL and HS modes (upon wake-up from Sleep, POR and BOR) for the primary oscillator.

Oscillator Mode	Oscillator Source	F	OS<2:0	>		F	PR<4:0	>		OSC2 Function
ECIO w/PLL 4x	PLL	1	1	1	0	1	1	0	1	I/O
ECIO w/PLL 8x	PLL	1	1	1	0	1	1	1	0	I/O
ECIO w/PLL 16x	PLL	1	1	1	0	1	1	1	1	I/O
FRC w/PLL 4X	PLL	1	1	1	0	0	0	0	1	I/O
FRC w/PLL 8x	PLL	1	1	1	0	1	0	1	0	I/O
FRC w/PLL 16x	PLL	1	1	1	0	0	0	1	1	I/O
XT w/PLL 4x	PLL	1	1	1	0	0	1	0	1	OSC2
XT w/PLL 8x	PLL	1	1	1	0	0	1	1	0	OSC2
XT w/PLL 16x	PLL	1	1	1	0	0	1	1	1	OSC2
HS2 w/PLL 4x	PLL	1	1	1	1	0	0	0	1	OSC2
HS2 w/PLL 8x	PLL	1	1	1	1	0	0	1	0	OSC2
HS2 w/ PLL 16x	PLL	1	1	1	1	0	0	1	1	OSC2
HS3 w/PLL 4x	PLL	1	1	1	1	0	1	0	1	OSC2
HS3 w/PLL 8x	PLL	1	1	1	1	0	1	1	0	OSC2
HS3 w/PLL 16x	PLL	1	1	1	1	0	1	1	1	OSC2
ECIO	External	0	1	1	0	1	1	0	0	I/O
ХТ	External	0	1	1	0	0	1	0	0	OSC2
HS	External	0	1	1	0	0	0	1	0	OSC2
EC	External	0	1	1	0	1	0	1	1	CLKO
ERC	External	0	1	1	0	1	0	0	1	CLKO
ERCIO	External	0	1	1	0	1	0	0	0	I/O
XTL	External	0	1	1	0	0	0	0	0	OSC2
LP	Secondary	0	0	0	Х	Х	Х	Х	Х	(Note 1, 2)
FRC	Internal FRC	0	0	1	Х	Х	Х	Х	Х	(Note 1, 2)
LPRC	Internal LPRC	0	1	0	Х	Х	Х	Х	Х	(Note 1, 2)

TABLE 17-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The OSC2 pin is either usable as a general purpose I/O pin or is completely unusable, depending on the Primary Oscillator mode selection (FPR<4:0>).

2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.

	L 10-2.				-		n
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycle s	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WRFG = 0x0000	1	1	None
		CLR	Ws	$W_{S} = 0x0000$	1	1	None
		CLR	Acc Wx Wxd Wy Wyd AWB	Clear Accumulator	1	1	
16		CLRWDT		Clear Watchdog Timer	1	1	WDTO Sleep
17	COM	COM	f	$f - \overline{f}$	1	1	N 7
	00101	COM	f WREC	WREG $-\overline{f}$	1	1	N Z
		COM	We Wd	Wd = Ws	1	1	N Z
18	CP	CD	f		1	1	
10		CP	1 Wb #1;+5	Compare Wb with lit5	1	1	
		CP	Wb,#1105	Compare Wb with Wc (Wb _ Wc)	1	1	
10	CDO	CP CD0	MD, WS	Compare f with 0x0000	1	1	
19	CFU	CPU	L	Compare Wa with 0x0000	1	1	
20	CDR	CPU	WS £	Compare fixith WREC, with Porrow	1	1	
20	CFD	CPB		Compare What with Life with Derrow	1	1	
		CPB	WD,#11t5	Compare Wb with IIIS, with Borrow	1	1	
		СЪВ	WD,WS	(Wb - Ws - C)	1		C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f -1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f -1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f -2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f -2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 20-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 20-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾ Max Unit		Units	Conditions		
SY10	TmcL	MCLR Pulse Width (low)	2			μs	-40°C to +85°C		
SY11	TPWRT	Power-up Timer Period	2 10 43	4 16 64	8 32 128	ms	-40°C to +85°C, VDD = 5V User programmable		
SY12	TPOR	Power On Reset Delay	3	10	30	μs	-40°C to +85°C		
SY13	Tioz	I/O high impedance from MCLR Low or Watchdog Timer Reset		0.8	1.0	μs			
SY20	Twdt1 Twdt2 Twdt3	Watchdog Timer Time-out Period (No Prescaler)	1.1 1.2 1.3	2.0 2.0 2.0	6.6 5.0 4.0	ms ms ms	VDD = 2.5V VDD = 3.3V, ±10% VDD = 5V, ±10%		
SY25	TBOR	Brown-out Reset Pulse Width ⁽³⁾	100	_	_	μs	Vdd ⊴Vbor (D034)		
SY30	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.
 - **3:** Refer to Figure 20-2 and Table 20-11 for BOR.

FIGURE 20-7: BAND GAP START-UP TIME CHARACTERISTICS

TABLE 20-22: BAND GAP START-UP TIME REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SY40	TBGAP	Band Gap Start-up Time	_	40	65	μs	Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON<13> bit

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TABLE 20-35: CAN MODULE I/O TIMING REQUIREMENTS

AC CHARA	CTERISTICS	Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Тур ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time			10	25	ns	
CA11	TioR	Port Output Rise Time			10	25	ns	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter		500	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

