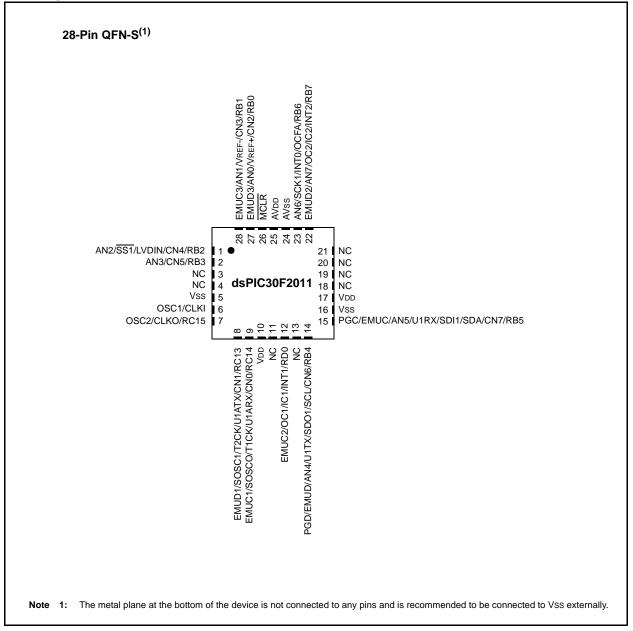


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3012-20e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 3-3: CORE REGISTER MAP (CONTINUED)

	U. U				00.11		/											
SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CORCON	0044	—	_	-	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000 0000 0010 0000
MODCON	0046	XMODEN	YMODEN	_			BWM	l<3:0>			YWI	M<3:0>			XWM<	<3:0>		0000 0000 0000 0000
XMODSRT	0048		XS<15:1> 0 u								uuuu uuuu uuuu uuu0							
XMODEND	004A							XE	<15:1>								1	uuuu uuuu uuul
YMODSRT	004C							YS	6<15:1>								0	uuuu uuuu uuuu uuu0
YMODEND	004E		YE<15:1> 1 1								uuuu uuuu uuul							
XBREV	0050	BREN	BREN XB<14:0>								uuuu uuuu uuuu uuuu							
DISICNT	0052	—	_							DISICN	<13:0>							0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

8.1 Interrupt Priority

The user-assignable interrupt priority bits (IP<2:0>) for each individual interrupt source are located in the LS 3 bits of each nibble within the IPCx register(s). Bit 3 of each nibble is not used and is read as a '0'. These bits define the priority level assigned to a particular interrupt by the user.

Note:	The user-assignable priority levels start at
	0 as the lowest priority and level 7 as the
	highest priority.

Natural Order Priority is determined by the position of an interrupt in the vector table, and only affects interrupt operation when multiple interrupts with the same user-assigned priority become pending at the same time.

Table 8-1 lists the interrupt numbers and interrupt sources for the dsPIC30F2011/2012/3012/3013 devices and their associated vector numbers.

- **Note 1:** The natural order priority scheme has 0 as the highest priority and 53 as the lowest priority.
 - **2:** The natural order priority number is the same as the INT number.

The ability for the user to assign every interrupt to one of seven priority levels means that the user can assign a very high overall priority level to an interrupt with a low natural order priority. For example, the PLVD (Low Voltage Detect) can be given a priority of 7. The INTO (External Interrupt 0) may be assigned to priority level 1, thus giving it a very low effective priority.

TABLE 8-1:INTERRUPT VECTOR TABLE

Interrupt Number	Vector Number	Interrupt Source								
	Highest Natural Order Priority									
0	8	INT0 – External Interrupt 0								
1	9	IC1 – Input Capture 1								
2	10	OC1 – Output Compare 1								
3	11	T1 – Timer 1								
4	12	IC2 – Input Capture 2								
5	13	OC2 – Output Compare 2								
6	14	T2 – Timer2								
7	15	T3 – Timer3								
8	16	SPI1								
9	17	U1RX – UART1 Receiver								
10	18	U1TX – UART1 Transmitter								
11	19	ADC – ADC Convert Done								
12	20	NVM – NVM Write Complete								
13	21	SI2C – I ² C [™] Slave Interrupt								
14	22	MI2C – I ² C Master Interrupt								
15	23	Input Change Interrupt								
16	24	INT1 – External Interrupt 1								
17-22	25-30	Reserved								
23	31	INT2 – External Interrupt 2								
24	32	U2RX ⁽¹⁾ – UART2 Receiver								
25	33	U2TX ⁽¹⁾ – UART2 Transmitter								
26-41	34-49	Reserved								
42	50	LVD – Low-Voltage Detect								
43-53	51-61	Reserved								
	Lowest N	Natural Order Priority								

Note 1: Only the dsPIC30F3013 has UART2 and the U2RX, U2TX interrupts. These locations are reserved for the dsPIC30F2011/2012/3012.

TABLE	8-2:	dsP	PIC30F	2011/2	012/30	12 INT	ERRU	PT COI	NTROL	LER R	EGIS	ER N	IAP					
SFR Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
INTCON1	0080	NSTDIS	_	_	_	_	OVATE	OVBTE	COVTE	_		_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000 0000 0000 0000
INTCON2	0082	ALTIVT	DISI		_	I	_			_		-		_	INT2EP	INT1EP	INT0EP	0000 0000 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INTOIF	0000 0000 0000 0000
IFS1	0086	_	_		_	I	_			INT2IF		_		_	_	_	INT1IF	0000 0000 0000 0000
IFS2	0088	_	_		_		LVDIF			_		_		_	_	_	_	0000 0000 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000 0000 0000 0000
IEC1	008E		_				_			INT2IE		_		_	_	_	INT1IE	0000 0000 0000 0000
IEC2	0090						LVDIE			_		_		—	_	—		0000 0000 0000 0000
IPC0	0094	_	-	T1IP<2:0>	•		0	DC1IP<2:0	>	—		IC1IP<	2:0>	_		NT0IP<2:0;	>	0100 0100 0100 0100
IPC1	0096	_	1	[31P<2:0	>	I		T2IP<2:0>		_		OC2IP<	2:0>	_		IC2IP<2:0>		0100 0100 0100 0100
IPC2	0098	_	A	ADIP<2:0>	>	_	U	1TXIP<2:0)>	—		U1RXIP	<2:0>	_	5	SPI1IP<2:0	>	0100 0100 0100 0100
IPC3	009A	_	C	CNIP<2:0	>	I	N	112CIP<2:0)>	_		SI2CIP<	2:0>	_	١	NVMIP<2:0	>	0100 0100 0100 0100
IPC4	009C	_	_		_	I	_			_		_		_		NT1IP<2:0>	>	0000 0000 0000 0100
IPC5	009E	_	IN	T2IP<2:0	>		_			_		_		_	_	_	-	0100 0000 0000 0000
IPC6	00A0		_				_			_	1	0	0	—	1	0	0	0000 0000 0100 0100
IPC7	00A2		-	I	-		_			-		_		—	_	_	-	0000 0000 0000 0000
IPC8	00A4		_	-	_		_			_	-	-		_	_	_		0000 0000 0000 0000
IPC9	00A6		-	I	-	I	_	_		-		_		_	_	_	_	0000 0000 0000 0000
IPC10	00A8		_	_	_		L	VDIP<2:0	>	_	_	-		—	_	_	—	0000 0100 0000 0000

TABLE 8-2. dePIC30E2011/2012/3012 INTERRUPT CONTROLLER REGISTER MAP

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The timer interrupt enable bit is located in the IEC0 Control register in the interrupt controller.

NOTES:

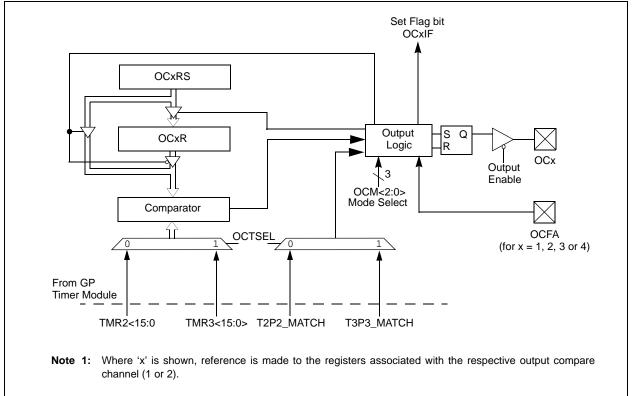
12.0 OUTPUT COMPARE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

This section describes the output compare module and associated operational modes. The features provided by this module are useful in applications requiring operational modes, such as:

- Generation of Variable Width Output Pulses
- Power Factor Correction

Figure 12-1 depicts a block diagram of the output compare module.


The key operational features of the output compare module include:

- Timer2 and Timer3 Selection mode
- Simple Output Compare Match mode
- Dual Output Compare Match mode
- Simple PWM mode
- Output Compare During Sleep and Idle modes
- Interrupt on Output Compare/PWM Event

These operating modes are determined by setting the appropriate bits in the 16-bit OC1CON and OC2CON registers. The dsPIC30F2011/2012/3012/3013 devices have 2 compare channels.

OCxRS and OCxR in Figure 12-1 represent the Dual Compare registers. In the Dual Compare mode, the OCxR register is used for the first compare and OCxRS is used for the second compare.

FIGURE 13-1: SPI BLOCK DIAGRAM

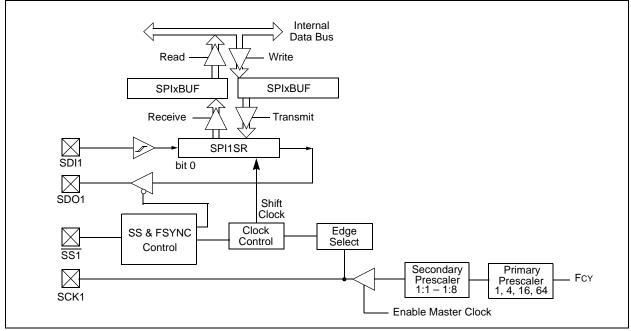


Figure 13-2 depicts the a master/slave connection between two processors. In Master mode, the clock is generated by prescaling the system clock. Data is transmitted as soon as a value is written to SPI1BUF. The interrupt is generated at the middle of the transfer of the last bit.

In Slave mode, data is transmitted and received as external clock pulses appear on SCK. Again, the interrupt is generated when the last bit is latched. If SS1 control is enabled, then transmission and reception are enabled only when SS1 = low. The SDO1 output will be disabled in SS1 mode with SS1 high.

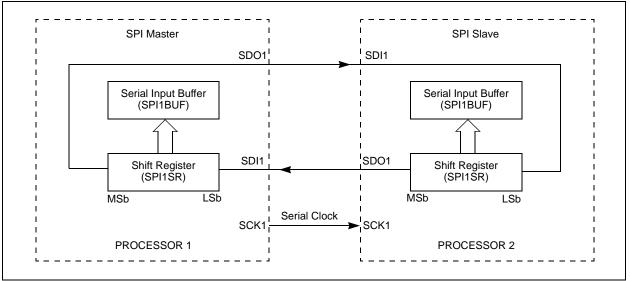
The clock provided to the module is (Fosc/4). This clock is then prescaled by the primary (PPRE<1:0>) and the secondary (SPRE<2:0>) prescale factors. The CKE bit determines whether transmit occurs on transition from active clock state to Idle clock state, or vice versa. The CKP bit selects the Idle state (high or low) for the clock.

13.1.1 WORD AND BYTE COMMUNICATION

A control bit, MODE16 (SPI1CON<10>), allows the module to communicate in either 16-bit or 8-bit mode. 16-bit operation is identical to 8-bit operation except that the number of bits transmitted is 16 instead of 8.

The user software must disable the module prior to changing the MODE16 bit. The SPI module is reset when the MODE16 bit is changed by the user.

A basic difference between 8-bit and 16-bit operation is that the data is transmitted out of bit 7 of the SPI1SR for 8-bit operation, and data is transmitted out of bit 15 of the SPI1SR for 16-bit operation. In both modes, data is shifted into bit 0 of the SPI1SR.


13.1.2 SDO1 DISABLE

A control bit, DISSDO, is provided to the SPI1CON register to allow the SDO1 output to be disabled. This will allow the SPI module to be connected in an input only configuration. SDO1 can also be used for general purpose I/O.

13.2 Framed SPI Support

The module supports a basic framed SPI protocol in Master or Slave mode. The control bit, FRMEN, enables framed SPI support and causes the SS1 pin to perform the Frame Synchronization Pulse (FSYNC) function. The control bit, SPIFSD, determines whether the SS1 pin is an input or an output (i.e., whether the module receives or generates the Frame Synchronization Pulse). The frame pulse is an active-high pulse for a single SPI clock cycle. When Frame Synchronization is enabled, the data transmission starts only on the subsequent transmit edge of the SPI clock.

13.3 Slave Select Synchronization

The $\overline{SS1}$ pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode with $\overline{SS1}$ pin control enabled (SSEN = 1). When the $\overline{SS1}$ pin is low, transmission and reception are enabled and the SDOx pin is driven. When $\overline{SS1}$ pin goes high, the SDOx pin is no longer driven. Also, the SPI module is resynchronized, and all counters/control circuitry are reset. Therefore, when the $\overline{SS1}$ pin is asserted low again, transmission/reception will begin at the MSb even if $\overline{SS1}$ had been de-asserted in the middle of a transmit/receive.

13.4 SPI Operation During CPU Sleep Mode

During Sleep mode, the SPI module is shut down. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted.

The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode.

13.5 SPI Operation During CPU Idle Mode

When the device enters Idle mode, all clock sources remain functional. The SPISIDL bit (SPI1STAT<13>) selects if the SPI module will stop or continue on idle. If SPISIDL = 0, the module will continue to operate when the CPU enters Idle mode. If SPISIDL = 1, the module will stop when the CPU enters Idle mode.

14.12.2 I²C MASTER RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (I2CCON<3>). The I²C module must be Idle before the RCEN bit is set, otherwise the RCEN bit will be disregarded. The Baud Rate Generator begins <u>counting</u> and on each rollover, the state of the SCL pin ACK and data are shifted into the I2CRSR on the rising edge of each clock.

14.12.3 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the I2CBRG register. When the BRG is loaded with this value, the BRG counts down to '0' and stops until another reload has taken place. If clock arbitration is taking place, for instance, the BRG is reloaded when the SCL pin is sampled high.

As per the I²C standard, FSCK may be 100 kHz or 400 kHz. However, the user can specify any baud rate up to 1 MHz. I2CBRG values of '0' or '1' are illegal.

EQUATION 14-1: SERIAL CLOCK RATE

 $I2CBRG = \left(\frac{FCY}{FSCL} - \frac{FCY}{1,111,111}\right) - 1$

14.12.4 CLOCK ARBITRATION

Clock arbitration occurs when the master de-asserts the SCL pin (SCL allowed to float high) during any receive, transmit, or Restart/Stop condition. When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of I2CBRG and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device.

14.12.5 MULTI-MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-master operation support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high while another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the MI2CIF pulse and reset the master portion of the I^2C port to its Idle state.

If a transmit was in progress when the bus collision occurred, the transmission is halted, the TBF flag is cleared, the SDA and SCL lines are de-asserted and a value can now be written to I2CTRN. When the user services the I^2C master event Interrupt Service Routine, if the I^2C bus is free (i.e., the P bit is set), the user can resume communication by asserting a Start condition.

If a Start, Restart, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the I2CCON register are cleared to '0'. When the user services the bus collision Interrupt Service Routine, and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins, and if a Stop condition occurs, the MI2CIF bit will be set.

A write to the I2CTRN will start the transmission of data at the first data bit regardless of where the transmitter left off when bus collision occurred.

In a multi-master environment, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the I2CSTAT register, or the bus is Idle and the S and P bits are cleared.

14.13 I²C Module Operation During CPU Sleep and Idle Modes

14.13.1 I²C OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shut down and stay at logic '0'. If Sleep occurs in the middle of a transmission and the state machine is partially into a transmission as the clocks stop, then the transmission is aborted. Similarly, if Sleep occurs in the middle of a reception, then the reception is aborted.

14.13.2 I²C OPERATION DURING CPU IDLE MODE

For the I²C, the I2CSIDL bit selects if the module will stop on Idle or continue on Idle. If I2CSIDL = 0, the module will continue operation on assertion of the Idle mode. If I2CSIDL = 1, the module will stop on Idle.

The configuration procedures in the next section provide the required setup values for the conversion speeds above 100 ksps.

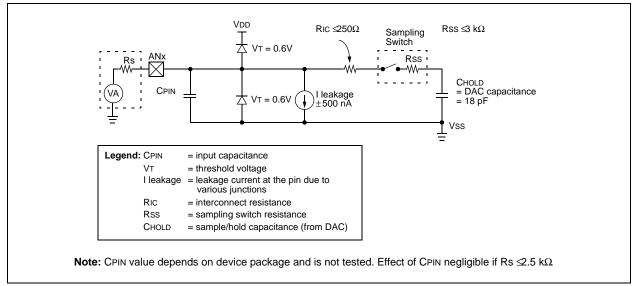
16.7.1 200 KSPS CONFIGURATION GUIDELINE

The following configuration items are required to achieve a 200 ksps conversion rate.

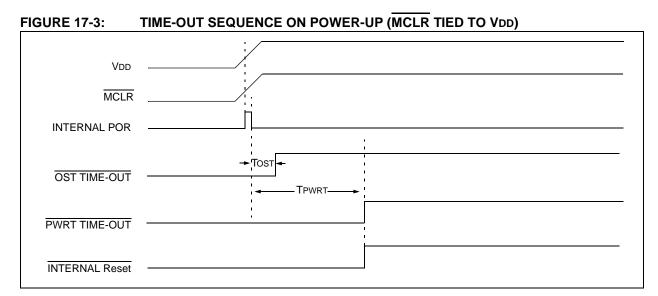
- Comply with conditions provided in Table 16-1.
- Connect external VREF+ and VREF- pins following the recommended circuit shown in Figure 16-2.
- Set SSRC<2.0> = 111 in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Write the SMPI<3.0> control bits in the ADCON2 register for the desired number of conversions between interrupts.
- Configure the ADC clock period to be:

$$\frac{1}{(14+1) \times 200,000} = 334 \text{ ns}$$

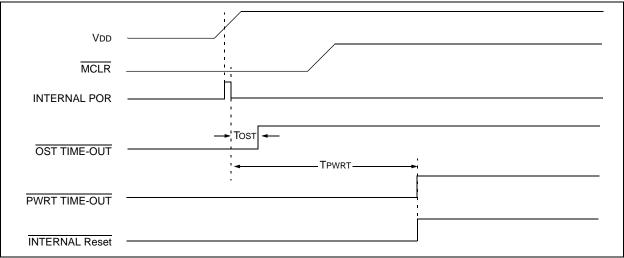
by writing to the ADCS<5:0> control bits in the ADCON3 register.


• Configure the sampling time to be 1 TAD by writing: SAMC<4:0> = 00001.

The following figure shows the timing diagram of the ADC running at 200 ksps. The TAD selection in conjunction with the guidelines described above allows a conversion speed of 200 ksps. See Example 16-1 for code example.


16.8 A/D Acquisition Requirements

The analog input model of the 12-bit ADC is shown in Figure 16-3. The total sampling time for the A/D is a function of the internal amplifier settling time and the holding capacitor charge time.


For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The impedance source (Rs), the interconnect impedance (RIC) and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the ADC, the maximum recommended source impedance, Rs, is 2.5 k Ω After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

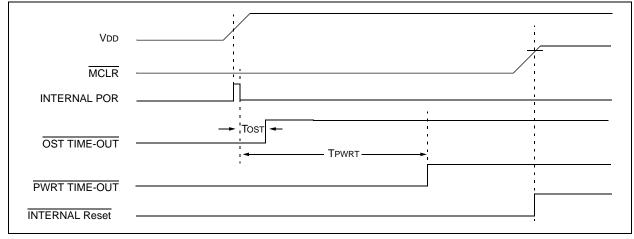

FIGURE 16-3: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

FIGURE 17-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 17-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

18.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F Programmer's Reference Manual" (DS70030).

The dsPIC30F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from PIC MCU instruction sets.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode which specifies the instruction type, and one or more operands which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 18-1 shows the general symbols used in describing the instructions.

The dsPIC30F instruction set summary in Table 18-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions may use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication, and may include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Field	Description
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4*W4,W5*W5,W6*W6,W7*W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12],none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2, [W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2, [W11+W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 18-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

19.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

19.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

19.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

19.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

19.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

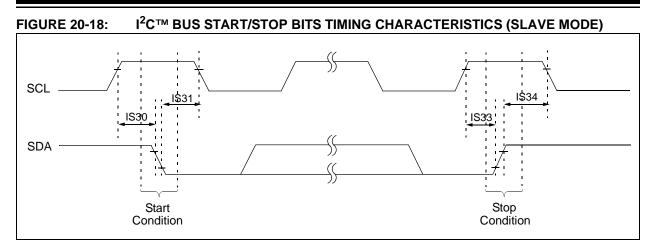
20.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

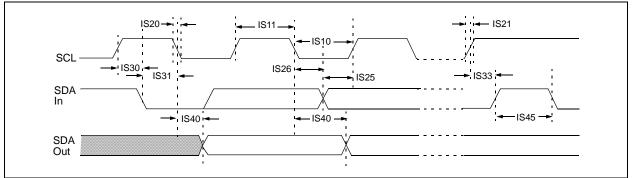
For detailed information about the dsPIC30F architecture and core, refer to the "dsPIC30F Family Reference Manual" (DS70046).

Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings^(†)


Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR) (Note 1)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +5.5V
Voltage on MCLR with respect to Vss	0V to +13.25V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin (Note 2)	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.


2: Maximum allowable current is a function of device maximum power dissipation. See Table 20-2 for PDMAX.

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific devices, please refer to the dsPIC30F2011/2012/3012/3013 Sensor Family table on page 4 of this data sheet.

TABLE 20-34: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERIS	STICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions				
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz				
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz.				
			1 MHz mode ⁽¹⁾	0.5	—	μs					
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz				
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz				
			1 MHz mode ⁽¹⁾	0.5	—	μs					
IS20	TF:SCL	SDA and SCL	100 kHz mode	—	300	ns	CB is specified to be from				
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
			1 MHz mode ⁽¹⁾	—	100	ns					
IS21	TR:SCL	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from				
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
			1 MHz mode ⁽¹⁾	—	300	ns					

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

AC CHARACTERISTICS				Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature-40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
		Cloc	k Parame	ters							
AD50	TAD	A/D Clock Period	334	—	_	ns	VDD = 3-5.5V (Note 1)				
AD51	tRC	A/D Internal RC Oscillator Period	1.2	1.5	1.8	μs					
		Con	version R	ate							
AD55	tCONV	Conversion Time	_	14 Tad		ns					
AD56a	FCNV	Throughput Rate	_	200	_	ksps	VDD = VREF = 5V, Industrial temperature				
AD56b	FCNV	Throughput Rate		100	_	ksps	VDD = VREF = 5V, Extended temperature				
AD57	TSAMP	Sampling Time	1 Tad	—	—	ns	V_{DD} = 3-5.5V source resistance Rs = 0-2.5 k Ω				
		Timin	g Parame	eters							
AD60	tPCS	Conversion Start from Sample Trigger	—	1 Tad	_	ns					
AD61	tPSS	Sample Start from Setting Sample (SAMP) Bit	0.5 Tad	—	1.5 Tad	ns					
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1)	_	0.5 Tad	_	ns					
AD63	tDPU (2)	Time to Stabilize Analog Stage from A/D Off to A/D On	_	—	20	μs					

TABLE 20-37: 12-BIT A/D CONVERSION TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1). During this time the ADC result is indeterminate.

Revision G (November 2010)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Added Note 1 to all QFN pin diagrams (see "Pin Diagrams").
Section 1.0 "Device Overview"	Updated the Pinout I/O Descriptions for AVDD and AVSS (see Table 1-1).
Section 17.0 "System Integration"	Added a shaded note on OSCTUN functionality in Section 17.2.5 "Fast RC Oscillator (FRC)".
Section 20.0 "Electrical Characteristics"	Updated the maximum value for parameter DI19 and the minimum value for parameter DI29 in the I/O Pin Input Specifications (see Table 20-8).
	Removed parameter D136 and updated the minimum, typical, maximum, and conditions for parameters D122 and D134 in the Program and EEPROM specifications (see Table 20-12).
	Renamed parameter AD56 to AD56a and added parameter AD56b to the 12-bit A/D Conversion Timing Requirements (see Table 20-37).
"Product Identification System"	Added the "MM" package definition.

Reset	165
Simple OC/PWM Mode	171
SPI Module	
Master Mode (CKE = 0)	172
Master Mode (CKE = 1)	173
Slave Mode (CKE = 0)	174
Slave Mode (CKE = 1)	176
Type A Timer External Clock	
Type B Timer External Clock	
Type C Timer External Clock	
Watchdog Timer	
Timing Specifications	
PLL Clock	
Trap Vectors	69

U

UART Module	
Address Detect Mode 10)9
Auto-Baud Support10)9
Baud Rate Generator10)9
Enabling and Setting Up10)7
Framing Error (FERR)10)9
Idle Status 10)9
Loopback Mode10)9
Operation During CPU Sleep and Idle Modes 11	0
Overview)5
Parity Error (PERR)10)9
Receive Break10	
Receive Buffer (UxRXB)10)8
Receive Buffer Overrun Error (OERR Bit) 10)8
Receive Interrupt10)8
Receiving Data10)8
Receiving in 8-bit or 9-bit Data Mode10	
Reception Error Handling10)8
Transmit Break10)8
Transmit Buffer (UxTXB)10	
Transmit Interrupt10)8
Transmitting Data10)7
Transmitting in 8-bit Data Mode10)7
Transmitting in 9-bit Data Mode10)7
UART1 Register Map11	1
UART2 Register Map11	1
UART Operation	
Idle Mode11	0
Sleep Mode11	0
Unit ID Locations	23
Universal Asynchronous Receiver Transmitter	
(UART) Module 10)5
w	
Wake-up from Sleep	
Wake-up from Sleep and Idle	0
Watchdog Timer	_
Timing Characteristics16	
Timing Requirements	
Watchdog Timer (WDT) 123, 13	
Enabling and Disabling13	
Operation13	
WWW Address	
WWW, On-Line Support	9