

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3012-20e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

This data sheet contains information specific to the dsPIC30F2011, dsPIC30F2012, dsPIC30F3012 and dsPIC30F3013 Digital Signal Controllers (DSC). These devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture.

The following block diagrams depict the architecture for these devices:

- Figure 1-1 illustrates the dsPIC30F2011
- Figure 1-2 illustrates the dsPIC30F2012
- Figure 1-3 illustrates the dsPIC30F3012
- Figure 1-4 illustrates the dsPIC30F3013

Following the block diagrams, Table 1-1 relates the I/O functions to pinout information.

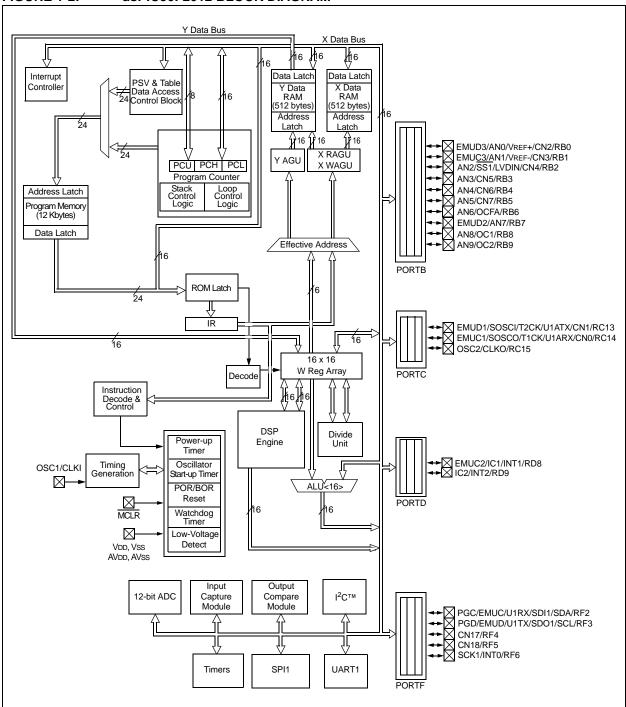


Table 1-1 provides a brief description of device I/O pinouts and the functions that may be multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.

Pin Name	Pin Type	Buffer Type	Description						
AN0 - AN9		Analog	Analog input channels.						
AVdd	Р	Р	Positive supply for analog module. This pin must be connected at all times.						
AVss	Р	Р	Ground reference for analog module. This pin must be connected at all times.						
CLKI CLKO	I O	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.						
CN0 - CN7	Ι	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.						
EMUD EMUC EMUD1 EMUC1 EMUC2 EMUC2 EMUD3 EMUC3	I/O I/O I/O I/O I/O I/O	ST ST ST ST ST ST ST ST	ICD Primary Communication Channel data input/output pin. ICD Primary Communication Channel clock input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Secondary Communication Channel clock input/output pin. ICD Tertiary Communication Channel data input/output pin. ICD Tertiary Communication Channel clock input/output pin. ICD Quaternary Communication Channel clock input/output pin. ICD Quaternary Communication Channel clock input/output pin.						
IC1 - IC2	I	ST	Capture inputs 1 through 2.						
INT0 INT1 INT2	 	ST ST ST	External interrupt 0. External interrupt 1. External interrupt 2.						
LVDIN	I	Analog	Low-Voltage Detect Reference Voltage Input pin.						
MCLR	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active-low Reset to the device.						
OC1-OC2 OCFA	0 	ST	Compare outputs 1 through 2. Compare Fault A input.						
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS						
OSC2	I/O	_	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.						
PGD	I/O	ST	In-Circuit Serial Programming™ data input/output pin.						
PGC	l	ST	In-Circuit Serial Programming clock input pin.						
RB0 - RB9	I/O	ST	PORTB is a bidirectional I/O port.						
RC13 - RC15	I/O	ST	PORTC is a bidirectional I/O port.						
RD0, RD8-RD9	I/O	ST	PORTD is a bidirectional I/O port.						
RF2 - RF5	I/O	ST	PORTF is a bidirectional I/O port.						
SCK1 SDI1 SDO1 SS1	I/O I O I	ST ST — ST	Synchronous serial clock input/output for SPI1. SPI1 Data In. SPI1 Data Out. SPI1 Slave Synchronization.						
Legend: CM ST I	= S		ole input or outputAnalog =Analog inputinput with CMOS levelsO=OutputP=Power						

TABLE 1-1: PINOUT I/O DESCRIPTIONS

NOTES:

The SA and SB bits are modified each time data passes through the adder/subtracter but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated if saturation is enabled. When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits generate an arithmetic warning trap when saturation is disabled.

The overflow and saturation Status bits can optionally be viewed in the STATUS register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three saturation and overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- 2. Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- 3. Bit 39 Catastrophic Overflow:

The bit 39 overflow Status bit from the adder is used to set the SA or SB bit which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.4.2.2 Accumulator 'Write-Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

1. W13, Register Direct:

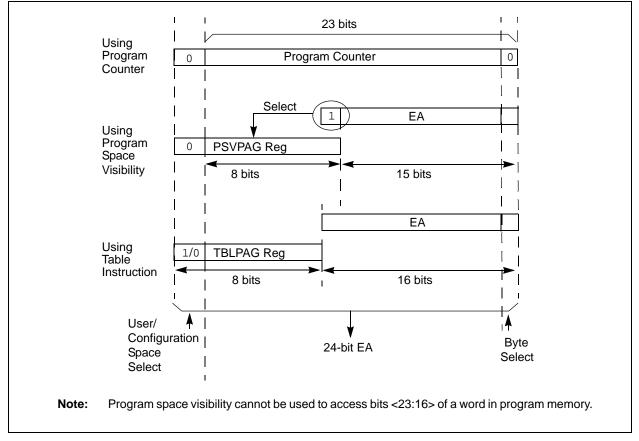
The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.

 [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.4.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value, which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.


Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. If this is the case, the LSb (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme will remove any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus (subject to data saturation, see **Section 2.4.2.4 "Data Space Write Saturation"**). Note that for the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>				0			
TBLRD/TBLWT	User (TBLPAG<7> = 0)	TBL	PAG<7:0>	Data EA<15:0>					
TBLRD/TBLWT	Configuration (TBLPAG<7> = 1)	TBLPAG<7:0>			Data EA<15:0>				
Program Space Visibility	User	0 PSVPAG<7:0> Data EA<			4:0>				

TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

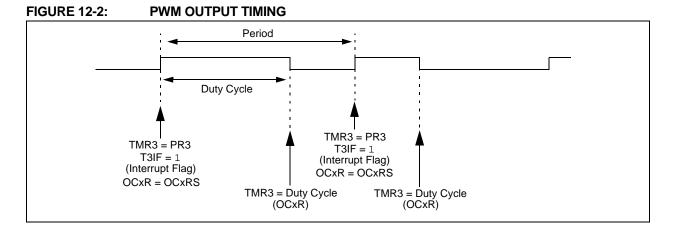
FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

NOTES:

12.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 12-1.

EQUATION 12-1:


 $PWM \ period = [(PRx) + 1] \cdot 4 \cdot Tosc \cdot$ $(TMRx \ prescale \ value)$

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared.
- The OCx pin is set.
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin remains low.
 - Exception 2: If duty cycle is greater than PRx, the pin remains high.
- The PWM duty cycle is latched from OCxRS into OCxR.
- The corresponding timer interrupt flag is set.

See Figure 12-2 for key PWM period comparisons. Timer3 is referred to in Figure 12-2 for clarity.

TABLE 12-1: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
OC1RS	OC1RS 0180 Output Compare 1 Secondary Register										0000 0000 0000 0000							
OC1R	OC1R 0182 Output Compare 1 Main Register								0000 0000 0000 0000									
OC1CON	0184	-	_	OCSIDL			_			_	_	_	OCFLT	OCTSEL	OCM<2:0>			0000 0000 0000 0000
OC2RS	0186 Output Compare 2 Secondary Register									0000 0000 0000 0000								
OC2R	0188	3 Output Compare 2 Main Register							0000 0000 0000 0000									
OC2CON	018A	-	_	OCSIDL	—	_	_	_	_				OCFLT	OCTSEL		OCM<2:0>	>	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

The configuration procedures in the next section provide the required setup values for the conversion speeds above 100 ksps.

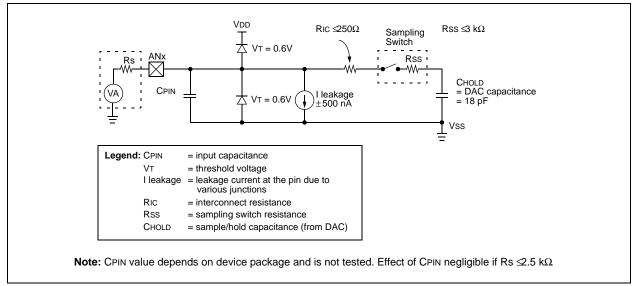
16.7.1 200 KSPS CONFIGURATION GUIDELINE

The following configuration items are required to achieve a 200 ksps conversion rate.

- Comply with conditions provided in Table 16-1.
- Connect external VREF+ and VREF- pins following the recommended circuit shown in Figure 16-2.
- Set SSRC<2.0> = 111 in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Write the SMPI<3.0> control bits in the ADCON2 register for the desired number of conversions between interrupts.
- Configure the ADC clock period to be:

$$\frac{1}{(14+1) \times 200,000} = 334 \text{ ns}$$

by writing to the ADCS<5:0> control bits in the ADCON3 register.


• Configure the sampling time to be 1 TAD by writing: SAMC<4:0> = 00001.

The following figure shows the timing diagram of the ADC running at 200 ksps. The TAD selection in conjunction with the guidelines described above allows a conversion speed of 200 ksps. See Example 16-1 for code example.

16.8 A/D Acquisition Requirements

The analog input model of the 12-bit ADC is shown in Figure 16-3. The total sampling time for the A/D is a function of the internal amplifier settling time and the holding capacitor charge time.

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The impedance source (Rs), the interconnect impedance (RIC) and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the ADC, the maximum recommended source impedance, Rs, is 2.5 k Ω After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

FIGURE 16-3: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

17.0 SYSTEM INTEGRATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide Power Saving Operating modes and offer code protection:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Programmable Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- Low-Voltage Detect
- Power-Saving Modes (Sleep and Idle)
- Code Protection
- Unit ID Locations
- In-Circuit Serial Programming (ICSP)

dsPIC30F devices have a Watchdog Timer which is permanently enabled via the Configuration bits or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry.

Sleep mode is designed to offer a very low current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active but the CPU is shut-off. The RC oscillator option saves system cost while the LP crystal option saves power.

17.1 Oscillator System Overview

The dsPIC30F oscillator system has the following modules and features:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to boost internal operating frequency
- A clock switching mechanism between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- Clock Control register (OSCCON)
- · Configuration bits for main oscillator selection

Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). Thereafter, the clock source can be changed between permissible clock sources. The OSCCON register controls the clock switching and reflects system clock related status bits.

Table 17-1 provides a summary of the dsPIC30F Oscillator Operating modes. A simplified diagram of the oscillator system is shown in Figure 17-1.

TABLE 18-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycle s	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
0	DOLIN	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
0	Divi	BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GEO, Expr	Branch if greater than	1	1 (2)	None
		BRA		Branch if unsigned greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if less than or equal	1	1 (2)	None
			LE, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if less than	1	. ,	
		BRA	LT,Expr			1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry Branch if Not Negative	1	1 (2)	None
		BRA	NN, Expr			1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
_		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None

20.1 DC Characteristics

TABLE 20-1: OPERATING MIPS VS. VOLTAGE

Voo Benge	Town Dongo	Max MIPS				
VDD Range	Temp Range	dsPIC30FXXX-30I	dsPIC30FXXX-20E			
4.5-5.5V	-40°C to 85°C	30	—			
4.5-5.5V	-40°C to 125°C	_	20			
3.0-3.6V	-40°C to 85°C	20	—			
3.0-3.6V	-40°C to 125°C	—	15			
2.5-3.0V	-40°C to 85°C	10	—			

TABLE 20-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC30F201x-30I					
dsPIC30F301x-30I					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
dsPIC30F201x-20E					
dsPIC30F301x-20E					
Operating Junction Temperature Range	TJ	-40		+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation:					
Internal chip power dissipation:					
$P_{INT} = V_{DD} \times (I_{DD} - \Sigma I_{OH})$	PD PINT + PI/O				W
I/O Pin power dissipation:					
$\mathbf{P}_{\mathrm{I/O}} = \sum \left(\{ \mathbf{V}_{\mathrm{DD}} - \mathbf{V}_{\mathrm{OH}} \} \times \mathbf{I}_{\mathrm{OH}} \right) + \sum \left(\mathbf{V}_{\mathrm{OL}} \times \mathbf{I}_{\mathrm{OL}} \right)$					
Maximum Allowed Power Dissipation	PDMAX	۲)	「J - TA) / θ	JA	W

TABLE 20-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 18-pin PDIP (P)	θJA	44		°C/W	1
Package Thermal Resistance, 18-pin SOIC (SO)	θJA	57	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP (SP)	θJA	42	_	°C/W	1
Package Thermal Resistance, 28-pin (SOIC)	θJA	49	_	°C/W	1
Package Thermal Resistance, 44-pin QFN	θJA	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-ja (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽²⁾					
DI10		I/O pins: with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		OSC1 (in XT, HS and LP modes)	Vss	—	0.2 Vdd	V	
DI17		OSC1 (in RC mode) ⁽³⁾	Vss	—	0.3 Vdd	V	
DI18		SDA, SCL	Vss	—	0.3 Vdd	V	SM bus disabled
DI19		SDA, SCL	Vss	—	0.8	V	SM bus enabled
	Vih	Input High Voltage ⁽²⁾					
DI20		I/O pins: with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSC1 (in XT, HS and LP modes)	0.7 Vdd	_	Vdd	V	
DI27		OSC1 (in RC mode) ⁽³⁾	0.9 Vdd	_	Vdd	V	
DI28		SDA, SCL	0.7 Vdd	_	Vdd	V	SM bus disabled
DI29		SDA, SCL	2.1	_	Vdd	V	SM bus enabled
	ICNPU	CNxx Pull-up Current ⁽²⁾					
DI30			50	250	400	μA	VDD = 5V, VPIN = VSS
	lı∟	Input Leakage Current ⁽²⁾⁽⁴⁾⁽⁵⁾					
DI50		I/O ports	—	0.01	±1	μA	Vss ≤VPıN ≤VDD, Pin at high impedance
DI51		Analog input pins	—	0.50	—	μA	Vss ⊴VPiN ⊴VDD, Pin at high impedance
DI55		MCLR	—	0.05	±5	μA	Vss ⊴Vpin ⊴Vdd
DI56		OSC1	_	0.05	±5	μA	Vss ⊴VPiN ⊴VDD, XT, HS and LP Osc mode

TABLE 20-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode.

4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

5: Negative current is defined as current sourced by the pin.

Clock Oscillator Mode	Fosc (MHz) ⁽¹⁾	Τ C Υ (μsec) ⁽²⁾	MIPS ⁽³⁾ w/o PLL	MIPS ⁽³⁾ w PLL x4	MIPS ⁽³⁾ w PLL x8	MIPS ⁽³⁾ w PLL x16
EC	0.200	20.0	0.05	—	—	—
	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	—
	25	0.16	6.25	—	—	—
XT	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	—

TABLE 20-17: INTERNAL CLOCK TIMING EXAMPLES

Note 1: Assumption: Oscillator Postscaler is divide by 1.

2: Instruction Execution Cycle Time: TCY = 1/MIPS.

3: Instruction Execution Frequency: MIPS = (Fosc * PLLx)/4 [since there are 4 Q clocks per instruction cycle].

TABLE 20-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @	FRC Fr	eq. = 7.3	7 MHz ⁽¹⁾					
OS63	FRC	—	—	±2.00	%	-40°C ≤TA ≤+85°C	VDD = 3.0-5.5V		
		_		±5.00	%	-40°C ≤TA ≤+125°C VDD = 3.0-5.5V			

Note 1: Frequency calibrated at 7.372 MHz ±2%, 25°C and 5V. TUN bits (OSCCON<3:0>) can be used to compensate for temperature drift.

TABLE 20-19: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Characteristic	Min Typ Max Units Conditions				Conditions	
	LPRC @ Freq. = 512 kHz ⁽¹⁾						
OS65A		-50	—	+50	%	VDD = 5.0V, ±10%	
OS65B		-60		+60	%	VDD = 3.3V, ±10%	
OS65C		-70		+70	%	VDD = 2.5V	

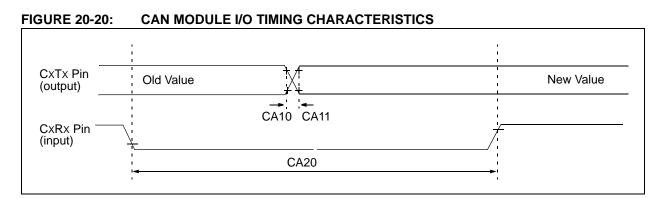

Note 1: Change of LPRC frequency as VDD changes.

TABLE 20-33: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	TCY/2 (BRG + 1)	—	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM20	TF:SCL	SDA and SCL	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDA and SCL Rise Time	100 kHz mode	_	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns			
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	—	_	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns			
			400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	—	_	ns			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	Only relevant for		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns			
-		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns			
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns			
			400 kHz mode	—	1000	ns			
			1 MHz mode ⁽²⁾	_		ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μs	free before a new		
			1 MHz mode ⁽²⁾	_		μs	transmission can start		
IM50	Св	Bus Capacitive L			400	pF			

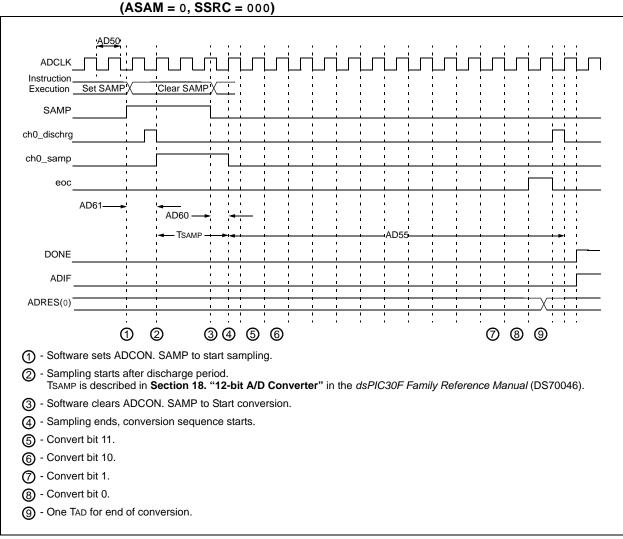
Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 21. "Inter-Integrated Circuit™ (I²C)" (DS70068) in the *dsPIC30F Family Reference Manual* (DS70046).

2: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

TABLE 20-35: CAN MODULE I/O TIMING REQUIREMENTS

AC CHARA	CTERISTIC	Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Тур ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time			10	25	ns	
CA11	TioR	Port Output Rise Time			10	25	ns	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter		500	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
AD24	Eoff	Offset Error	-2	-1.5	-1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5V	
AD24A	EOFF	Offset Error	-2	-1.5	-1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25	—	Monotonicity ⁽¹⁾	—	—		—	Guaranteed	
		D	ynamic Perf	formance	e			
AD30	THD	Total Harmonic Distortion	_	-71	_	dB		
AD31	SINAD	Signal to Noise and Distortion	—	68	_	dB		
AD32	SFDR	Spurious Free Dynamic Range	—	83	—	dB		
AD33	Fnyq	Input Signal Bandwidth	—	—	100	kHz		
AD34	ENOB	Effective Number of Bits	10.95	11.1	_	bits		

TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

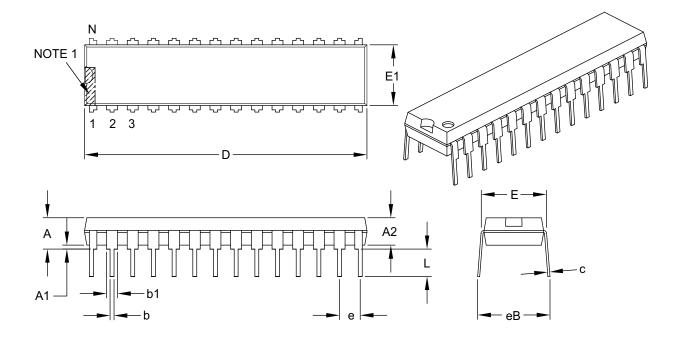

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.

FIGURE 20-21: 12-BIT A/D CONVERSION TIMING CHARACTERISTICS

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES					
Dimensio	MIN	NOM	MAX			
Number of Pins	Ν	28				
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.200		
Molded Package Thickness	A2	.120	.135	.150		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.335		
Molded Package Width	E1	.240	.285	.295		
Overall Length	D	1.345	1.365	1.400		
Tip to Seating Plane	L	.110	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.050	.070		
Lower Lead Width		.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B