

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3013-30i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, 16-bit Digital Signal Controllers

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

High-Performance Modified RISC CPU:

- Modified Harvard architecture
- C compiler optimized instruction set architecture
- Flexible addressing modes
- 83 base instructions
- 24-bit wide instructions, 16-bit wide data path
- Up to 24 Kbytes on-chip Flash program space
- · Up to 2 Kbytes of on-chip data RAM
- Up to 1 Kbytes of nonvolatile data EEPROM
- 16 x 16-bit working register array
- Up to 30 MIPS operation:
 - DC to 40 MHz external clock input
 - 4 MHz 10 MHz oscillator input with PLL active (4x, 8x, 16x)
- Up to 21 interrupt sources:
 - 8 user-selectable priority levels
 - 3 external interrupt sources
 - 4 processor trap sources

DSP Features:

- Dual data fetch
- · Modulo and Bit-Reversed modes
- Two 40-bit wide accumulators with optional saturation logic
- 17-bit x 17-bit single-cycle hardware fractional/ integer multiplier
- All DSP instructions are single cycle
 - Multiply-Accumulate (MAC) operation
- Single-cycle ±16 shift

Peripheral Features:

- · High-current sink/source I/O pins: 25 mA/25 mA
- Three 16-bit timers/counters; optionally pair up 16-bit timers into 32-bit timer modules
- · 16-bit Capture input functions
- 16-bit Compare/PWM output functions
- 3-wire SPI modules (supports four Frame modes)
- I²C[™] module supports Multi-Master/Slave mode and 7-bit/10-bit addressing
- Up to two addressable UART modules with FIFO buffers

Analog Features:

- 12-bit Analog-to-Digital Converter (ADC) with:
 - 200 ksps conversion rate
 - Up to 10 input channels
 - Conversion available during Sleep and Idle
- Programmable Low-Voltage Detection (PLVD)
- Programmable Brown-out Reset

Special Microcontroller Features:

- Enhanced Flash program memory:
 - 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical)
- Data EEPROM memory:
 - 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical)
- Self-reprogrammable under software control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT) with on-chip low-power RC oscillator for reliable operation
- Fail-Safe Clock Monitor operation:
 - Detects clock failure and switches to on-chip low-power RC oscillator
- Programmable code protection
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable Power Management modes:
 - Sleep, Idle and Alternate Clock modes

CMOS Technology:

- Low-power, high-speed Flash technology
- Wide operating voltage range (2.5V to 5.5V)
- Industrial and Extended temperature ranges
- Low-power consumption

Table of Contents

1.0	Device Overview	11
2.0	CPU Architecture Overview	19
3.0	Memory Organization	29
4.0	Address Generator Units	43
5.0	Flash Program Memory	49
6.0	Data EEPROM Memory	55
7.0	I/O Ports	59
8.0	Interrupts	65
9.0	Timer1 Module	73
10.0	Timer2/3 Module	77
11.0	Input Capture Module	83
12.0	Output Compare Module	87
13.0	SPI™ Module	93
14.0	I2C [™] Module	97
15.0	Universal Asynchronous Receiver Transmitter (UART) Module	. 105
16.0	12-bit Analog-to-Digital Converter (ADC) Module	. 113
17.0	System Integration	. 123
18.0	Instruction Set Summary	. 137
19.0	Development Support	. 145
20.0	Electrical Characteristics	. 149
21.0	Packaging Information	. 187
Index	·	. 201
The I	Aicrochip Web Site	. 207
Custo	omer Change Notification Service	. 207
Custo	omer Support	. 207
Read	er Response	. 208
Prod	uct Identification System	. 209

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

4.1.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared between both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.1.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The two source operand prefetch registers must belong to the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU. W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset addressing is only available for W9 (in X space) and W11 (in Y space). In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-modified by 2
- Register Indirect Post-modified by 4
- Register Indirect Post-modified by 6
- Register Indirect with Register Offset (Indexed)

4.1.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.2 Modulo Addressing

Modulo Addressing is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer Start address (for incrementing buffers), or end address (for decrementing buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-2 length. As these buffers satisfy the Start and the end address criteria, they can operate in a Bidirectional mode (i.e., address boundary checks are performed on both the lower and upper address boundaries).

6.2 Erasing Data EEPROM

6.2.1 ERASING A BLOCK OF DATA EEPROM

In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example 6-2.

EXAMPLE 6-2: DATA EEPROM BLOCK ERASE

```
; Select data EEPROM block, WR, WREN bits
   MOV
           #0x4045,W0
   MOV
           W0 NVMCON
                                     ; Initialize NVMCON SFR
; Start erase cycle by setting WR after writing key sequence
                                    ; Block all interrupts with priority <7 for
   DISI
          #5
                                     ; next 5 instructions
   MOV
           #0x55,W0
          W0 NVMKEY
                                    ; Write the 0x55 key
   MOV
   MOV
           #0xAA,W1
                                    ;
   MOV
          W1 NVMKEY
                                    ; Write the OxAA key
   BSET
          NVMCON, #WR
                                     ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

6.2.2 ERASING A WORD OF DATA EEPROM

The NVMADRU and NVMADR registers must point to the block. Select WR a block of data Flash and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example 6-3.

EXAMPLE 6-3: DATA EEPROM WORD ERASE

```
; Select data EEPROM word, WR, WREN bits
   MOV
           #0x4044,W0
   MOV
           W0 NVMCON
; Start erase cycle by setting WR after writing key sequence
   DISI
          #5
                                         ; Block all interrupts with priority <7 for
                                         ; next 5 instructions
   MOV
           #0x55,W0
           W0 NVMKEY
   MOV
                                         ; Write the 0x55 key
           #0xAA,W1
   MOV
           W1 NVMKEY
                                        ; Write the OxAA key
   MOV
   BSET
           NVMCON, #WR
                                         ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

8.2 Reset Sequence

A Reset is not a true exception because the interrupt controller is not involved in the Reset process. The processor initializes its registers in response to a Reset which forces the PC to zero. The processor then begins program execution at location 0x000000. A GOTO instruction is stored in the first program memory location immediately followed by the address target for the GOTO instruction. The processor executes the GOTO to the specified address and then begins operation at the specified target (start) address.

8.2.1 RESET SOURCES

In addition to external Reset and Power-on Reset (POR), there are six sources of error conditions which 'trap' to the Reset vector.

- Watchdog Time-out: The watchdog has timed out, indicating that the processor is no longer executing the correct flow of code.
- Uninitialized W Register Trap: An attempt to use an uninitialized W register as an Address Pointer causes a Reset.
- Illegal Instruction Trap: Attempted execution of any unused opcodes results in an illegal instruction trap. Note that a fetch of an illegal instruction does not result in an illegal instruction trap if that instruction is flushed prior to execution due to a flow change.
- Brown-out Reset (BOR): A momentary dip in the power supply to the device has been detected which may result in malfunction.
- Trap Lockout: Occurrence of multiple trap conditions simultaneously causes a Reset.

8.3 Traps

Traps can be considered as non-maskable interrupts indicating a software or hardware error, which adhere to a predefined priority as shown in Figure 8-1. They are intended to provide the user a means to correct erroneous operation during debug and when operating within the application.

Note: If the user does not intend to take corrective action in the event of a trap error condition, these vectors must be loaded with the address of a default handler that contains the RESET instruction. If, on the other hand, one of the vectors containing an invalid address is called, an address error trap is generated.

Note that many of these trap conditions can only be detected when they occur. Consequently, the questionable instruction is allowed to complete prior to trap exception processing. If the user chooses to recover from the error, the result of the erroneous action that caused the trap may have to be corrected.

There are eight fixed priority levels for traps: Level 8 through Level 15, which implies that the IPL3 is always set during processing of a trap.

If the user is not currently executing a trap, and he sets the IPL<3:0> bits to a value of '0111' (Level 7), then all interrupts are disabled, but traps can still be processed.

8.3.1 TRAP SOURCES

The following traps are provided with increasing priority. However, since all traps can be nested, priority has little effect.

Math Error Trap:

The math error trap executes under the following four circumstances:

- 1. If an attempt is made to divide by zero, the divide operation is aborted on a cycle boundary and the trap is taken.
- If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes an overflow from bit 31 and the accumulator guard bits are not utilized.
- 3. If enabled, a math error trap is taken when an arithmetic operation on either accumulator A or B causes a catastrophic overflow from bit 39 and all saturation is disabled.
- 4. If the shift amount specified in a shift instruction is greater than the maximum allowed shift amount, a trap occurs.

12.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 12-1.

EQUATION 12-1:

 $PWM \ period = [(PRx) + 1] \cdot 4 \cdot Tosc \cdot$ $(TMRx \ prescale \ value)$

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared.
- The OCx pin is set.
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin remains low.
 - Exception 2: If duty cycle is greater than PRx, the pin remains high.
- The PWM duty cycle is latched from OCxRS into OCxR.
- The corresponding timer interrupt flag is set.

See Figure 12-2 for key PWM period comparisons. Timer3 is referred to in Figure 12-2 for clarity.

16.13 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.

When reading the PORT register, all pins configured as analog input channels will read as cleared.

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

16.14 Connection Considerations

The analog inputs have diodes to VDD and VSS as ESD protection. This requires that the analog input be between VDD and VSS. If the input voltage exceeds this range by greater than 0.3V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

TABLE 16-2: A/D CONVERTER REGISTER MAP FOR dsPIC30F2011/3012	TABLE 16-2:	A/D CONVERTER	REGISTER MAP	FOR dsPIC30F2011/3012
--	-------------	---------------	---------------------	-----------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
ADCBUF0	0280	_	_	_	—		ADC Data Buffer 0 0								0000 uuuu uuuu uuuu			
ADCBUF1	0282				—		ADC Data Buffer 1								0000 uuuu uuuu uuuu			
ADCBUF2	0284				—						ADC Dat	ta Buffer 2						0000 uuuu uuuu uuuu
ADCBUF3	0286				—						ADC Dat	ta Buffer 3						0000 uuuu uuuu uuuu
ADCBUF4	0288				—						ADC Dat	ta Buffer 4						0000 uuuu uuuu uuuu
ADCBUF5	028A				—						ADC Dat	ta Buffer 5						0000 uuuu uuuu uuuu
ADCBUF6	028C				—						ADC Dat	ta Buffer 6	;					0000 uuuu uuuu uuuu
ADCBUF7	028E				—						ADC Dat	ta Buffer 7	,					0000 uuuu uuuu uuuu
ADCBUF8	0290				—						ADC Dat	ta Buffer 8						0000 uuuu uuuu uuuu
ADCBUF9	0292				—						ADC Dat	ta Buffer 9)					0000 uuuu uuuu uuuu
ADCBUFA	0294				—						ADC Data	a Buffer 10	C					0000 uuuu uuuu uuuu
ADCBUFB	0296				—						ADC Dat	a Buffer 1'	1					0000 uuuu uuuu uuuu
ADCBUFC	0298				—						ADC Data	a Buffer 12	2					0000 uuuu uuuu uuuu
ADCBUFD	029A				—						ADC Data	a Buffer 13	3					0000 uuuu uuuu uuuu
ADCBUFE	029C				—						ADC Data	a Buffer 14	4					0000 uuuu uuuu uuuu
ADCBUFF	029E				—						ADC Data	a Buffer 15	5					0000 uuuu uuuu uuuu
ADCON1	02A0	ADON		ADSIDL	—			FORM	1<1:0>	5	SRC<2:0	>		—	ASAM	SAMP	DONE	0000 0000 0000 0000
ADCON2	02A2	V	/CFG<2:0>	>	—		CSCNA		—	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000 0000 0000 0000
ADCON3	02A4	_	_	_		SA	MC<4:0>			ADRC	_			ADC	S<5:0>			0000 0000 0000 0000
ADCHS	02A6	—	—	_	CH0NB		CH0SB<3:0> — — CH0NA CH0SA<3:0> C						0000 0000 0000 0000					
ADPCFG	02A8	_	_	_	_	_	_	_	—	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000
ADCSSL	02AA	_	_	_	_		_	_	_	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 17-1: OSCILLATOR OPERATING MODES

Oscillator Mode	Description
XTL	200 kHz-4 MHz crystal on OSC1:OSC2.
XT	4 MHz-10 MHz crystal on OSC1:OSC2.
XT w/PLL 4x	4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled.
XT w/PLL 8x	4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled.
XT w/PLL 16x	4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled ⁽¹⁾ .
LP	32 kHz crystal on SOSCO:SOSCI ⁽²⁾ .
HS	10 MHz-25 MHz crystal.
HS/2 w/PLL 4x	10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled.
HS/2 w/PLL 8x	10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled.
HS/2 w/PLL 16x	10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled ⁽¹⁾ .
HS/3 w/PLL 4x	12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled.
HS/3 w/PLL 8x	12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled.
HS/3 w/PLL 16x	12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled ⁽¹⁾ .
EC	External clock input (0-40 MHz).
ECIO	External clock input (0-40 MHz), OSC2 pin is I/O.
EC w/PLL 4x	External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled.
EC w/PLL 8x	External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled.
EC w/PLL 16x	External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled ⁽¹⁾ .
ERC	External RC oscillator, OSC2 pin is Fosc/4 output ⁽³⁾ .
ERCIO	External RC oscillator, OSC2 pin is I/O ⁽³⁾ .
FRC	7.37 MHz internal RC oscillator.
FRC w/PLL 4x	7.37 MHz Internal RC oscillator, 4x PLL enabled.
FRC w/PLL 8x	7.37 MHz Internal RC oscillator, 8x PLL enabled.
FRC w/PLL 16x	7.37 MHz Internal RC oscillator, 16x PLL enabled.
LPRC	512 kHz internal RC oscillator.

Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.

2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.

3: Requires external R and C. Frequency operation up to 4 MHz.

17.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

- The current oscillator group bits COSC<2:0>.
- The LPOSCEN bit (OSCCON register).

The LP oscillator is on (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if:

- COSC<2:0> = 000 (LP selected as main osc.) and
- LPOSCEN = 1

Keeping the LP oscillator on at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator will still require a start-up time

17.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator or Fast RC oscillator. The PLL is selectable to have either gains of x4, x8, and x16. Input and output frequency ranges are summarized in Table 17-3.

TABLE 17-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout			
4 MHz-10 MHz	x4	16 MHz-40 MHz			
4 MHz-10 MHz	x8	32 MHz-80 MHz			
4 MHz-7.5 MHz	x16	64 MHz-120 MHz			

The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal will be rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

17.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz $\pm 2\%$ nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator, or RC network. The FRC oscillator can be used with the PLL to obtain higher clock frequencies.

The dsPIC30F operates from the FRC oscillator whenever the current oscillator selection control bits in the OSCCON register (OSCCON<14:12>) are set to '001'.

The four bit field specified by TUN<3:0> (OSCTUN <3:0>) allows the user to tune the internal fast RC oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of +10.5% (840 kHz) and -12% (960 kHz) in steps of 1.50% around the factory calibrated setting, as shown in Table 17-4.

Note: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested. If OSCCON<14:12> are set to '111' and FPR<4:0> are set to '00001', '01010' or '00011', a PLL multiplier of 4, 8 or 16 (respectively) is applied.

Note:	When a 16x PLL is used, the FRC fre-
	quency must not be tuned to a frequency
	greater than 7.5 MHz.

TABLE 17-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	+ 10.5%
0110	+ 9.0%
0101	+ 7.5%
0100	+ 6.0%
0011	+ 4.5%
0010	+ 3.0%
0001	+ 1.5%
0000	Center Frequency (oscillator is
	running at calibrated frequency)
1111	- 1.5%
1110	- 3.0%
1101	- 4.5%
1100	- 6.0%
1011	- 7.5%
1010	- 9.0%
1001	- 10.5%
1000	- 12.0%

17.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock monitor circuits. It may also be used to provide a low-frequency clock source option for applications where power consumption is critical and timing accuracy is not required.

The LPRC oscillator is always enabled at a Power-on Reset because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator will remain on if one of the following is true:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the COSC<2:0> control bits in the OSCCON register

If one of the above conditions is not true, the LPRC will shut-off after the PWRT expires.

Note 1:	OSC2 pin	function is	determin	ed by the
	Primary	Oscillator	mode	selection
	(FPR<4:0>	>).		

 OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.

	L 10-2.				-		n
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycle s	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WRFG = 0x0000	1	1	None
		CLR	Ws	$W_{S} = 0x0000$	1	1	None
		CLR	Acc Wx Wxd Wy Wyd AWB	Clear Accumulator	1	1	
16		CLRWDT		Clear Watchdog Timer	1	1	WDTO Sleep
17	COM	COM	f	$f - \overline{f}$	1	1	N 7
	00101	COM	f WREC	WREG $-\overline{f}$	1	1	N Z
		COM	We Wd	Wd = Ws	1	1	N Z
18	CP	CD	f		1	1	
10		CP	1 Wb #1;+5	Compare Wb with lit5	1	1	
		CP	Wb,#1105	Compare Wb with Wc (Wb _ Wc)	1	1	
10	CDO	CP CD0	MD, WS	Compare f with 0x0000	1	1	
19	CFU	CPU	L	Compare Wa with 0x0000	1	1	
20	CDR	CPU	WS £	Compare fixith WREC, with Porrow	1	1	
20	CFD	CPB		Compare What with Life with Derrow	1	1	
		CPB	WD,#11t5	Compare Wb with IIIS, with Borrow	1	1	
		СЪВ	WD,WS	(Wb - Ws - C)	1		C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f -1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f -1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f -2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f -2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base						# of	01.1 E
Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	Cycle s	Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	MPY.N (Multiply Wm by Wn) to Accumulator Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from top-of-stack (TOS)	1	1	None
		POP	Wdo	Pop from top-of-stack (TOS) to Wdo		1	None
		POP.D	Wnd	Pop from top-of-stack (TOS) to W(nd):W(nd+1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to top-of-stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to top-of-stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns+1) to top-of-stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14+1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn)+1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 20-2: BROWN-OUT RESET CHARACTERISTICS

TABLE 20-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	ACTERIST	ICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No. Symbol Characteri			istic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
BO10	VBOR	BOR Voltage ⁽²⁾ on VDD transition high to	BORV = 11 ⁽³⁾		_		V	Not in operating range	
		low	BORV = 10	2.6	_	2.71	V		
			BORV = 01	4.1	_	4.4	V		
			BORV = 00	4.58		4.73	V		
BO15	VBHYS				5		mV		

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: 11 values not in usable operating range.

TABLE 20-24: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characte	teristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 TCY + 20			ns	Must also meet parameter TB15
					10		_	ns	
TB11	TtxL	TxCK Low Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 TCY + 20		_	ns	Must also meet parameter TB15
					10		—	ns	
TB15	TtxP	TxCK Input Period	d Synchronous, no prescaler Synchronous, with prescaler		Tcy + 10		—	ns	N = prescale value
					Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	ernal TxCK Clock		0.5 TCY		1.5 TCY	_	

Note: Timer2 and Timer4 are Type B.

TABLE 20-25: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Charact	aracteristic		Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 Tcy + 20	_	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous		0.5 TCY + 20	—	—	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, no prescaler		Tcy + 10	—	—	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	al TxCK Clock		0.5 TCY	_	1.5 TCY	_	

Note: Timer3 and Timer5 are Type C.

TABLE 20-30: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP10	TscL	SCKx output low time ⁽³⁾	Tcy/2	_		ns	_	
SP11	TscH	SCKx output high time ⁽³⁾	TCY/2	_	_	ns	_	
SP20	TscF	SCKx output fall time ⁽⁴⁾	—	—	—	ns	See parameter DO32	
SP21	TscR	SCKx output rise time ⁽⁴⁾	—	—	—	ns	See parameter DO31	
SP30	TdoF	SDOx data output fall time ⁽⁴⁾	—	—	—	ns	See parameter DO32	
SP31	TdoR	SDOx data output rise time ⁽⁴⁾	—	—	—	ns	See parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx data output valid after SCKx edge	—	—	30	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx data output setup to first SCKx edge	30	_		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup time of SDIx data input to SCKx edge	20	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge	20	—	_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI pins.

TABLE 20-34: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Charact	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μs	Device must operate at a minimum of 10 MHz.	
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS11 THI:SCL		Clock High Time	100 kHz mode	4.0		μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS20	TF:SCL	SCL SDA and SCL Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDA and SCL Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns	1	

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	-40°C -	SIA ≤+12 Units	Conditions	
			Device Si	ylqqu				
AD01	AVdd	Module VDD Supply	Greater of VDD - 0.3 or 2.7	-	Lesser of VDD + 0.3 or 5.5	V		
AD02	AVss	Module Vss Supply	Vss - 0.3	_	Vss + 0.3	V		
-			Reference	Inputs				
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVdd	V		
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.7	V		
AD07	Vref	Absolute Reference Voltage	AVss - 0.3	—	AVDD + 0.3	V		
AD08	IREF	Current Drain	—	200 .001	300 2	μΑ μΑ	A/D operating A/D off	
		·	Analog I	nput				
AD10	VINH-VINL	Full-Scale Input Span	Vrefl	—	Vrefh	V	See Note 1	
AD11	Vin	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V	—	
AD12		Leakage Current	_	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V Source Impedance = $2.5 \text{ k}\Omega$	
AD13		Leakage Current	_	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$ Source Impedance = 2.5 k Ω	
AD15	Rss	Switch Resistance	—	3.2K		Ω		
AD16	CSAMPLE	Sample Capacitor	_	18		pF		
AD17	Rin	Recommended Impedance of Analog Voltage Source		—	2.5K	Ω		
		-	DC Accur	acy ⁽²⁾			-	
AD20	Nr	Resolution	1	2 data b	its	bits		
AD21	INL	Integral Nonlinearity	_	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD21A	INL	Integral Nonlinearity	—	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD22	DNL	Differential Nonlinearity	—	—	<±1	LSb	Vinl = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22A	DNL	Differential Nonlinearity	—	_	<±1	LSb	Vinl = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD23	Gerr	Gain Error	+1.25	+1.5	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23A	Gerr	Gain Error	+1.25	+1.5	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
AD24	EOFF	Offset Error	-2	-1.5	-1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24A	EOFF	Offset Error	-2	-1.5	-1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25		Monotonicity ⁽¹⁾	—	—		_	Guaranteed	
		D	ynamic Perf	ormanc	e			
AD30	THD	Total Harmonic Distortion	—	-71	_	dB		
AD31	SINAD	Signal to Noise and Distortion	—	68	_	dB		
AD32	SFDR	Spurious Free Dynamic Range	—	83	_	dB		
AD33	Fnyq	Input Signal Bandwidth	—	—	100	kHz		
AD34	ENOB	Effective Number of Bits	10.95	11.1	_	bits		

TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Erom		
11011		
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Wou	ld you like a reply? Y N	
Devi	 ce: dsPIC30F2011/2012/3012/3013	Literature Number: DS70139G
Ques	stions:	
1. \	What are the best features of this document?	
-		
2. H	How does this document meet your hardware and softwa	are development needs?
-		
3. [Do you find the organization of this document easy to fol	low? If not, why?
-		
4. \	What additions to the document do you think would enha	nce the structure and subject?
-		
5. \	What deletions from the document could be made without	it affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading information (what an	d where)?
-		
7. H	How would you improve this document?	
-		
_		