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utilized in embedded systems.
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The applications of Embedded - DSP (Digital Signal
Processors) are vast and diverse, reflecting their critical
role in modern technology. In telecommunications, DSPs
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rendering in devices like smartphones, televisions, and
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Embedded - DSP (Digital Signal Processors) can be
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their specific applications and performance characteristics.
General-purpose DSPs offer a versatile solution for a wide
range of signal processing tasks, providing balanced
performance and flexibility. High-performance DSPs are
designed for applications requiring significant
computational power and speed, such as real-time video
processing and advanced communication systems. Low-
power DSPs cater to battery-operated and portable
devices, ensuring energy-efficient operation without
compromising performance. Additionally, application-
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audio processing or motor control, offering optimized
performance for specific tasks.

Types of Embedded - DSP (Digital Signal
Processors)

There are various types of Embedded - DSP (Digital Signal
Processors), each suited to different needs and
applications. Fixed-point DSPs are designed for
applications where precision is critical but the range of
values is limited, such as audio processing. Floating-point
DSPs provide a broader range of values and greater
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Pin Assignments
1 Pin Assignments
This section includes diagrams of the MSC8112 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams
Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Pin Assignments
1.2 Signal List By Ball Location
Table 1 presents signal list sorted by ball number. -

Table 1. MSC8112 Signal Listing by Ball Designator 

Des. Signal Name Des. Signal Name

B3 VDD C18 GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1

B4 GND C19 GPIO7/TDM3RCLK/IRQ5/ETHTXD3

B5 GND C20 GPIO3/TDM3TSYN/IRQ1/ETHTXD2

B6 NMI_OUT C21 GPIO5/TDM3TDAT/IRQ3/ETHRXD3

B7 GND C22 GPIO6/TDM3RSYN/IRQ4/ETHRXD2

B8 VDD D2 TDI

B9 GND D3 EE0

B10 VDD D4 EE1

B11 GND D5 GND

B12 VDD D6 VDDH

B13 GND D7 HCID2

B14 VDD D8 HCID3/HA8

B15 GND D9 GND

B16 VDD D10 VDD

B17 GND D11 GND

B18 VDD D12 VDD

B19 GPIO0/CHIP_ID0/IRQ4/ETHTXD0 D13 GND

B20 VDD D14 VDD

B21 VDD D15 VDD

B22 GND D16 GPIO31/TIMER3/SCL

C2 GND D17 GPIO29/CHIP_ID3/ETHTX_EN

C3 VDD D18 VDDH

C4 TDO D19 GPIO4/TDM3TCLK/IRQ2/ETHTX_ER

C5 SRESET D20 VDDH

C6 GPIO28/UTXD/DREQ2 D21 GND

C7 HCID1 D22 GPIO8/TDM3RDAT/IRQ6/ETHCOL

C8 GND E2 TCK

C9 VDD E3 TRST

C10 GND E4 TMS

C11 VDD E5 HRESET

C12 GND E6 GPIO27/URXD/DREQ1

C13 VDD E7 HCID0

C14 GND E8 GND

C15 GND E9 VDD

C16 GPIO30/TIMER2/TMCLK/SDA E10 GND

C17 GPIO2/TIMER1/CHIP_ID2/IRQ6 E11 VDD
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Pin Assignments
M15 VDDH P12 VCCSYN

M16 HBRST P13 GND

M17 VDDH P14 GND

M18 VDDH P15 TA

M19 GND P16 BR

M20 VDDH P17 TEA

M21 A24 P18 PSDVAL

M22 A21 P19 DP0/DREQ1/EXT_BR2

N2 HD26 P20 VDDH

N3 HD30 P21 GND

N4 HD29 P22 A19

N5 HD24 R2 HD18

N6 PWE2/PSDDQM2/PBS2 R3 VDDH

N7 VDDH R4 GND

N8 HWBS0/HDBS0/HWBE0/HDBE0 R5 HD22

N9 HBCS R6 HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6

N10 GND R7 HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4

N14 GND R8 TSZ1

N15 HRDS/HRW/HRDE R9 TSZ3

N16 BG R10 IRQ1/GBL

N17 HCS R11 VDD

N18 CS0 R12 VDD

N19 PSDWE/PGPL1 R13 VDD

N20 GPIO26/TDM0RDAT R14 TT0/HA7

N21 A23 R15 IRQ7/DP7/DREQ4

N22 A20 R16 IRQ6/DP6/DREQ3

P2 HD20 R17 IRQ3/DP3/DREQ2/EXT_BR3

P3 HD27 R18 TS

P4 HD25 R19 IRQ2/DP2/DACK2/EXT_DBG2

P5 HD23 R20 A17

P6 HWBS3/HDBS3/HWBE3/HDBE3 R21 A18

P7 HWBS2/HDBS2/HWBE2/HDBE2 R22 A16

P8 HWBS1/HDBS1/HWBE1/HDBE1 T2 HD17

P9 HCLKIN T3 HD21

P10 GND T4 HD1/DSISYNC

P11 GNDSYN T5 HD0/SWTE

Table 1. MSC8112 Signal Listing by Ball Designator  (continued)

Des. Signal Name Des. Signal Name
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
2 Electrical Characteristics
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing 
specifications. For additional information, see the MSC8112 Reference Manual.

2.1 Maximum Ratings

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification 
does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values 
in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. 
Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another 
specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8112.

CAUTION

This device contains circuitry protecting against damage
due to high static voltage or electrical fields; however,
normal precautions should be taken to avoid exceeding
maximum voltage ratings. Reliability is enhanced if unused
inputs are tied to an appropriate logic voltage level (for
example, either GND or VDD).

Table 2. Absolute Maximum Ratings

Rating Symbol Value Unit

Core and PLL supply voltage VDD –0.2 to 1.6 V

I/O supply voltage VDDH –0.2 to 4.0 V

Input voltage VIN –0.2 to 4.0 V

Maximum operating temperature: TJ 105 °C

Minimum operating temperature TJ –40 °C

Storage temperature range TSTG –55 to +150 °C

Notes: 1. Functional operating conditions are given in Table 3.
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond 

the listed limits may affect device reliability or cause permanent damage.
3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (TJ).
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
Table 5. DC Electrical Characteristics 

Characteristic Symbol Min Typical Max Unit

Input high voltage1, all inputs except CLKIN VIH 2.0 — 3.465 V

Input low voltage1 VIL GND 0 0.8 V

CLKIN input high voltage VIHC 2.4 3.0 3.465 V

CLKIN input low voltage VILC GND 0 0.8 V

Input leakage current, VIN = VDDH IIN –1.0 0.09 1 µA

Tri-state (high impedance off state) leakage current, VIN = VDDH IOZ –1.0 0.09 1 µA

Signal low input current, VIL = 0.8 V2 IL –1.0 0.09 1 µA

Signal high input current, VIH = 2.0 V2 IH –1.0 0.09 1 µA

Output high voltage, IOH = –2 mA,
except open drain pins

VOH 2.0 3.0 — V

Output low voltage, IOL= 3.2 mA VOL — 0 0.4 V

VCCSYN PLL supply current IVCCSYN — 2 4 mA

Internal supply current:
• Wait mode
• Stop mode

IDDW
IDDS

—
—

3753

2903
—
—

mA
mA

Typical power 300 MHz at 1.1 V4 P — 554 — mW

Notes: 1. See Figure 5 for undershoot and overshoot voltages.
2. Not tested. Guaranteed by design.
3. Measured for 1.1 V core at 25°C junction temperature.
4. The typical power values were calculated using a power calculator configured for two cores performing an EFR code with the 

device running at the specified operating frequency and a junction temperature of 25°C. No peripherals were included. The 
calculator was created using CodeWarrior® 2.5. These values are provided as examples only. Power consumption is 
application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining 
proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Section 3 of 
this document and in MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601).

Figure 5. Overshoot/Undershoot Voltage for VIH and VIL

GND
GND – 0.3 V
GND – 0.7 V

VIL

VIH

Must not exceed 10% of clock period

VDDH + 17%
VDDH + 8%

VDDH
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
 

In all cases, the power-up sequence must follow the guidelines shown in Figure 8.

The following rules apply:

1. During time interval A, VDDH should always be equal to or less than the VDD/VCCSYN voltage level.
The duration of interval A should be kept below 10 ms.

2. The duration of timing interval B should be kept as small as possible and less than 10 ms. 

Figure 7. Start-Up Sequence: VDD Raised Before VDDH with CLKIN Started with VDDH

Figure 8. Power-Up Sequence for VDDH and VDD/VCCSYN
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VDDH Nominal 

PORESET/TRST asserted
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CLKIN starts togglingVDD applied PORESET/TRST deasserted

1
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VDDH = Nominal 
VDD = Nominal 

3.3 V
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B

VDD/VCCSYN

VDDH (IO)

t (time)

V
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Electrical Characteristics
2.5.5 System Bus Access Timing

2.5.5.1 Core Data Transfers
Generally, all MSC8112 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The 
REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle 
is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling 
edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as Table 13 shows. 

Figure 10 is a graphical representation of Table 13.

Figure 9. Timing Diagram for a Reset Configuration Write

Table 13. Tick Spacing for Memory Controller Signals

BCLK/SC140 clock
Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)

T2 T3 T4

1:4, 1:6, 1:8, 1:10 1/4 REFCLK 1/2 REFCLK 3/4 REFCLK

1:3 1/6 REFCLK 1/2 REFCLK 4/6 REFCLK

1:5 2/10 REFCLK 1/2 REFCLK 7/10 REFCLK

Figure 10. Internal Tick Spacing for Memory Controller Signals

PORESET

 Internal

HRESET

Input

Output (I/O)

SRESET
Output (I/O)

RSTCONF, CNFGS, DSISYNC, DSI64
CHIP_ID[0–3], BM[0–2], SWTE, MODCK[1–2]

Host programs

Word

SPLL is locked 
(no external indication)

 

PORESET

Reset Configuration

pins are sampled
1

2

MODCK[3–5] 1 + 2

3

5

6

SPLL 
locking periodReset configuration write 

sequence during this 
period.

REFCLK

T1 T2 T3 T4

REFCLK

T1 T2 T3 T4

for 1:3

for 1:5

REFCLK

T1 T2 T3 T4

for 1:4, 1:6, 1:8, 1:10
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Electrical Characteristics
The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. 
The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

Table 14. AC Timing for SIU Inputs 

No. Characteristic 
Ref = CLKIN at 1.1 V

and 100 MHz
Units

10 Hold time for all signals after the 50% level of the REFCLK rising edge 0.5 ns

11a ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge 3.1 ns

11b DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising 
edge

3.6 ns

11c AACK set-up time before the 50% level of the REFCLK rising edge 3.0 ns

11d TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge
• Data-pipeline mode
• Non-pipeline mode 3.5

4.4
ns
ns

12 Data bus set-up time before REFCLK rising edge in Normal mode
• Data-pipeline mode
• Non-pipeline mode

1.9
4.2

ns
ns

131 Data bus set-up time before the 50% level of the REFCLK rising edge in ECC 
and PARITY modes
• Data-pipeline mode
• Non-pipeline mode

2.0
8.2

ns
ns

141 DP set-up time before the 50% level of the REFCLK rising edge
• Data-pipeline mode
• Non-pipeline mode

2.0
7.9

ns
ns

15a TS and Address bus set-up time before the 50% level of the REFCLK rising edge
• Extra cycle mode (SIUBCR[EXDD] = 0)
• No extra cycle mode (SIUBCR[EXDD] = 1) 4.2

5.5
ns
ns

15b Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the 
REFCLK rising edge
• Extra cycle mode (SIUBCR[EXDD] = 0)
• No extra cycle mode (SIUBCR[EXDD] = 1) 

3.7
4.8

ns
ns

16 PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge 3.7 ns

17 IRQx setup time before the 50% level; of the REFCLK rising edge3 4.0 ns

18 IRQx minimum pulse width3 6.0 + TREFCLK ns

Notes: 1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings.
2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge.
3. Guaranteed by design.
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
Table 15. AC Timing for SIU Outputs

No. Characteristic
Bus Speed in MHz3

Ref = CLKIN at 1.1 V
and 100 MHz

Units

302 Minimum delay from the 50% level of the REFCLK for all signals 0.9 ns

31 PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge 6.0 ns

32a Address bus max delay from the 50% level of the REFCLK rising edge
• Multi-master mode (SIUBCR[EBM] = 1)
• Single-master mode (SIUBCR[EBM] = 0)

6.4
5.3

ns
ns

32b Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level 
of the REFCLK rising edge

6.4 ns

32c Address attributes: TT[2–4]/TC max delay from the 50% level of the 
REFCLK rising edge

6.9 ns

32d BADDR max delay from the 50% level of the REFCLK rising edge 5.2 ns

33a Data bus max delay from the 50% level of the REFCLK rising edge
• Data-pipeline mode
• Non-pipeline mode

4.8
7.1

ns
ns

33b DP max delay from the 50% level of the REFCLK rising edge
• Data-pipeline mode
• Non-pipeline mode

6.0
7.5

ns
ns

34 Memory controller signals/ALE/CS[0–4] max delay from the 50% level of 
the REFCLK rising edge

5.1 ns

35a DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising 
edge

6.0 ns

35b AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK 
rising edge

5.5 ns

Notes: 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except 
where otherwise specified.

2. Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. 
Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in 
a timing increase at the rate of 0.15 ns per 5 pF increase in load.

3. The maximum bus frequency depends on the mode:
 • In 60x-compatible mode connected to another MSC8112 device, the frequency is determined by adding the input and output 

longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other 
influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.

 • In single-master mode, the frequency depends on the timing of the devices connected to the MSC8112.
 • To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the 

SIUMCR[BDD] bit. See the SIU chapter in the MSC8112 Reference Manual for details.
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
Figure 11. SIU Timing Diagram

REFCLK

AACK/ARTRY/TA/TEA/DBG/BG/BR 

Data bus inputs—normal mode

PUPMWAIT input

PSDVAL/TEA/TA outputs

Address bus/TT[0–4]/TC[0–2]/TBST/TSZ[0–3]/GBL outputs

Data bus outputs

Min delay for all output pins

11

10

10

10

12

15

31

32a/b

33a

30

DP outputs 33b

Memory controller/ALE outputs
34

Data bus inputs—ECC and parity modes

10
13

AACK/ABB/TS/DBG/BG/BR/DBB/CS outputs 

35

BADDR outputs 32c

DP inputs 14

Address bus/TS /TT[0–4]/TC[0–2]/

16

PSDVAL/ABB/DBB inputs

TBST/TSZ[0–3]/GBL inputs

18
17

IRQx inputs
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Electrical Characteristics
2.5.5.2 CLKIN to CLKOUT Skew
Table 17 describes the CLKOUT-to-CLKIN skew timing.

For designs that use the CLKOUT synchronization mode, use the skew values listed in Table 16 to adjust the rise-to-fall timing 
values specified for CLKIN synchronization. Figure 12 shows the relationship between the CLKOUT and CLKIN timings. 

2.5.5.3 DMA Data Transfers
Table 17 describes the DMA signal timing.

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ 
according to the timings in Table 17. Figure 13 shows synchronous peripheral interaction. 

Table 16. CLKOUT Skew

No. Characteristic Min1 Max1 Units

20 Rise-to-rise skew 0.0 0.95 ns

21 Fall-to-fall skew –1.5 1.0 ns

24 CLKOUT phase (1.1 V, 100 MHz)
• Phase high
• Phase low

3.3
3.3

—
—

ns
ns

Notes: 1. A positive number indicates that CLKOUT precedes CLKIN, A negative number indicates that CLKOUT follows CLKIN.
2. Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. The same skew is valid for all clock modes.
3. CLKOUT skews are measured using a load of 10 pF.
4. CLKOUT skews and phase are not measured for 500/166 Mhz parts because these parts only use CLKIN mode.

Figure 12. CLKOUT and CLKIN Signals.

Table 17. DMA Signals 

No. Characteristic 
Ref = CLKIN

Units
Min Max

37 DREQ set-up time before the 50% level of the falling edge of REFCLK 5.0 — ns

38 DREQ hold time after the 50% level of the falling edge of REFCLK 0.5 — ns

39 DONE set-up time before the 50% level of the rising edge of REFCLK 5.0 — ns

40 DONE hold time after the 50% level of the rising edge of REFCLK 0.5 — ns

41 DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge 0.5 7.5 ns

CLKIN

CLKOUT

20 21
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
2.5.6 DSI Timing
The timings in the following sections are based on a 20 pF capacitive load. 

2.5.6.1 DSI Asynchronous Mode

Figure 13. DMA Signals

Table 18. DSI Asynchronous Mode Timing

No. Characteristics Min Max Unit

100 Attributes1 set-up time before strobe (HWBS[n]) assertion 1.5 — ns

101 Attributes1 hold time after data strobe deassertion 1.3 — ns

102 Read/Write data strobe deassertion width:
• DCR[HTAAD] = 1

— Consecutive access to the same DSI
— Different device with DCR[HTADT] = 01
— Different device with DCR[HTADT] = 10
— Different device with DCR[HTADT] = 11

• DCR[HTAAD] = 0

1.8 + TREFCLK
5 + TREFCLK

5 + (1.5 × TREFCLK)
5 + (2.5 × TREFCLK)

1.8 + TREFCLK

—

ns
ns
ns
ns
ns

103 Read data strobe deassertion to output data high impedance — 8.5 ns

104 Read data strobe assertion to output data active from high impedance 2.0 — ns

105 Output data hold time after read data strobe deassertion 2.2 — ns

106 Read/Write data strobe assertion to HTA active from high impedance 2.2 — ns

107 Output data valid to HTA assertion 3.2 — ns

108 Read/Write data strobe assertion to HTA valid2 — 7.4 ns

109 Read/Write data strobe deassertion to output HTA high impedance.
(DCR[HTAAD] = 0, HTA at end of access released at logic 0)

— 6.5 ns

110 Read/Write data strobe deassertion to output HTA deassertion.
(DCR[HTAAD] = 1, HTA at end of access released at logic 1)

— 6.5 ns

111 Read/Write data strobe deassertion to output HTA high impedance.
(DCR[HTAAD] = 1, HTA at end of access released at logic 1
• DCR[HTADT] = 01
• DCR[HTADT] = 10
• DCR[HTADT] = 11

—

5 + TREFCLK
5 + (1.5 × TREFCLK)
5 + (2.5 × TREFCLK)

ns
ns
ns

112 Read/Write data strobe assertion width 1.8 + TREFCLK — ns

201 Host data input set-up time before write data strobe deassertion 1.0 — ns

202 Host data input hold time after write data strobe deassertion 1.7 — ns

Notes: 1. Attributes refers to the following signals: HCS, HA[11–29], HCID[0–4], HDST, HRW, HRDS, and HWBSn. 
2. This specification is tested in dual-strobe mode. Timing in single-strobe mode is guaranteed by design.
3. All values listed in this table are tested or guaranteed by design.

REFCLK

DREQ

DONE

DACK/DONE/DRACK

37

38

40

39

41
MSC8112 Dual Core Digital Signal Processor Data Sheet, Rev. 1
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Electrical Characteristics
Figure 15 shows DSI asynchronous write signals timing.

Figure 16 shows DSI asynchronous broadcast write signals timing.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16. Asynchronous Broadcast Write Timing Diagram

HD[0–63]

100 101

102

201

202

109
106

HWBSn2

108
110

111

112

HDBSn1

HTA4

HTA3

Notes: 1. Used for single-strobe mode access.
2. Used for dual-strobe mode access.
3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

HA[11–29]
HCS

HCID[0–4]
HDST
HRW1

HRDS2 

HD[0–63]

100 101

102
201

202

HWBSn2

112

HDBSn1

Notes: 1. Used for single-strobe mode access.
2. Used for dual-strobe mode access.

HA[11–29]
HCS

HCID[0–4]
HDST
HRW1

HRDS2 
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Electrical Characteristics
2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mode

No. Characteristic Expression
1.1 V Core

Units
Min Max

120 HCLKIN cycle time1,2 HTC 10.0 55.6 ns

121 HCLKIN high pulse width (0.5 ± 0.1) × HTC 4.0 33.3 ns

122 HCLKIN low pulse width (0.5 ± 0.1) × HTC 4.0 33.3 ns

123 HA[11–29] inputs set-up time — 1.2 — ns

124 HD[0–63] inputs set-up time — 0.6 — ns

125 HCID[0–4] inputs set-up time — 1.3 — ns

126 All other inputs set-up time — 1.2 — ns

127 All inputs hold time — 1.5 — ns

Notes: 1. Values are based on a frequency range of 18–70 MHz. 
2. Refer to Table 7 for HCLKIN frequency limits.

Table 20. DSI Outputs in Synchronous Mode

No. Characteristic 
1.1 V Core

Units
Min Max

128 HCLKIN high to HD[0–63] output active 2.0 — ns

129 HCLKIN high to HD[0–63] output valid — 7.6 ns

130 HD[0–63] output hold time 1.7 — ns

131 HCLKIN high to HD[0–63] output high impedance — 8.3 ns

132 HCLKIN high to HTA output active 2.2 — ns

133 HCLKIN high to HTA output valid — 7.4 ns

134 HTA output hold time 1.7 — ns

135 HCLKIN high to HTA high impedance — 7.5 ns

Figure 17. DSI Synchronous Mode Signals Timing Diagram

HCLKIN

HA[11–29] input signals

All other input signals

HD[0–63] output signals

HTA output signal

~ ~

 HD[0–63] input signals

120

127
123

126 127

122
121

131

130

129

128

133 135

134
132

~ ~
~ ~

HCID[0–4] input signals

125 127

127
124
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2.5.8 UART Timing

2.5.9 Timer Timing

Table 22. UART Timing

No. Characteristics Expression Min Max
Un
it 

400 URXD and UTXD inputs high/low duration 16 × TREFCLK 160.0 — ns

401 URXD and UTXD inputs rise/fall time 10 ns

402 UTXD output rise/fall time 10 ns

Figure 20. UART Input Timing

Figure 21. UART Output Timing

Table 23. Timer Timing

No. Characteristics
Ref = CLKIN

Unit
Min Max

500 TIMERx frequency 10.0 — ns

501 TIMERx Input high period 4.0 — ns

502 TIMERx Output low period 4.0 — ns

503 TIMERx Propagations delay from its clock input 3.1 9.5 ns

Figure 22. Timer Timing

UTXD, URXD

400

 inputs

400

401 401

UTXD output
 

402 402

500

502501

TIMERx (Input)

TIMERx (Output)

503
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Hardware Design Considerations
During the power-up sequence, if VDD rises before VDDH (see Figure 6), current can pass from the VDD supply through the 
device ESD protection circuits to the VDDH supply. The ESD protection diode can allow this to occur when VDD exceeds VDDH 
by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

• Never allow VDD to exceed VDDH + 0.8V.

• Design the VDDH supply to prevent reverse current flow by adding a minimum 10 Ω resistor to GND to limit the 
current. Such a design yields an initial VDDH level of VDD – 0.8 V before it is enabled.

After power-up, VDDH must not exceed VDD/VCCSYN by more than 2.6 V. 

3.2 Power Supply Design Considerations
When implementing a new design, use the guidelines described in the MSC8112 Design Checklist (AN3374 for optimal system 
performance. MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples (AN2937) provides detailed 
design information. See Section 2.5.2 for start-up timing specifications.

Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the 
decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on 
the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved 
by using the following guidelines:

• For the core supply, use a voltage regulator rated at 1.1 V with nominal rating of at least 3 A. This rating does not 
reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has 
better voltage recovery time than supplies with lower current ratings.

• Decouple the supply using low-ESR capacitors mounted as close as possible to the socket. Figure 33 shows three 
capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number. If possible, mount 
at least one of the capacitors directly below the MSC8112 device.

Each VCC and VDD pin on the MSC8112 device should have a low-impedance path to the board power supply. Similarly, each 
GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the 
chip. The VCC power supply should have at least four 0.1 µF by-pass capacitors to ground located as closely as possible to the 
four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC, VDD, and GND should 
be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and 
GND planes. 

All output pins on the MSC8112 have fast rise and fall times. PCB trace interconnection length should be minimized to 
minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to 
the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in 
synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk. 
Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to 
proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create 
higher transient currents in the VCC, VDD, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. 

Figure 33. Core Power Supply Decoupling

+
-

Power supply
or

Voltage Regulator

High frequency capacitors
(very low ESR and ESL)

Bulk/Tantalum capacitors
with low ESR and ESL

MSC8113

Maximum IR drop 
of 15 mV at 1 A

Note: Use at least three capacitors.

Lmax = 2 cm

One 0.01 µF capacitor
for every 3 core supply 

(Imin = 3 A)

pads.

1.1 V

Each capacitor must be at least 150 μF.
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Hardware Design Considerations
Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins: 
VCCSYN-GNDSYN. To ensure internal clock stability, filter the power to the VCCSYN input with a circuit similar to the one in 
Figure 34. For optimal noise filtering, place the circuit as close as possible to VCCSYN. The 0.01-µF capacitor should be closest 
to VCCSYN, followed by the 10-µF capacitor, the 10-nH inductor, and finally the 10-Ω resistor to VDD. These traces should be 
kept short and direct. Provide an extremely low impedance path to the ground plane for GNDSYN. Bypass GNDSYN to VCCSYN 
by a 0.01-µF capacitor located as close as possible to the chip package. For best results, place this capacitor on the backside of 
the PCB aligned with the depopulated void on the MSC8112 located in the square defined by positions, L11, L12, L13, M11, 
M12, M13, N11, N12, and N13.

3.3 Connectivity Guidelines
Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to 
VDDH or GND, except for the following:

• If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be 
disconnected.

• When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either 
up or down, depending on design requirements.

• HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the 
DCR[DSRFA] bit is set.

• When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/ 
HDBE[1–3] and HWBS[4–7]/HDBS[4–7]/HWBE[4–7]/HDBE[4–7]/PWE[4–7]/PSDDQM[4–7]/PBS[4–7]. 

• When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/HDBE[1–3] 
must be pulled up.

• When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.

• When the DSI uses sliding window address mode (DCR[SLDWA] = 1), the external HA[11–13] signals must be 
connected (tied) to the correct voltage levels so that the host can perform the first access to the DCR. After reset, the 
DSI expects full address mode (DCR[SLDWA] = 0). The DCR address in the DSI memory map is 0x1BE000, which 
requires the following connections:

— HA11 must be pulled high (1)

— HA12 must be pulled high (1)

— HA13 must be pulled low (0)

• The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.

• In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):

— BG, DBG, and TS can be left unconnected.

— EXT_BG[2–3], EXT_DBG[2–3], and GBL can be left unconnected if they are multiplexed to the system bus 
functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.

— BR must be pulled up.

— EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.

• If there is an external bus master (BCR[EBM] = 1):

— BR, BG, DBG, and TS must be pulled up.

— EXT_BR[2–3], EXT_BG[2–3], and EXT_DBG[2–3] must be pulled up if multiplexed to the system bus 
functionality.

• In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other 
modes, they must be pulled up.

Figure 34. VCCSYN Bypass

VDD

0.01 µF10 µF

VCCSYN

10Ω 10nH
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Hardware Design Considerations
Note: The MSC8112 does not support DLL-enabled mode. For the following two clock schemes, ensure that the DLL is 
disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).

• If no system synchronization is required (for example, the design does not use SDRAM), you can use any of the 
available clock modes.

• In the CLKIN synchronization mode, use the following connections:

— Connect the oscillator output through a buffer to CLKIN. 

— Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay path 
between the clock buffer to the MSC8112 and the SDRAM is equal (that is, has a skew less than 100 ps).

— Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.

Note: See the Clock chapter in the MSC8113 Reference Manual for details.

• If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it 
should be pulled up.

• The following signals: SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, CHIPID[0–3], RSTCONF and BM[0–2] are 
used to configure the MSC8112 and are sampled on the deassertion of the PORESET signal. Therefore, they should 
be tied to GND or VDDH or through a pull-down or a pull-up resistor until the deassertion of the PORESET signal.

• When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive) signals must 
be pulled up.

• When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be connected 
externally to any signal line.

Note: For details on configuration, see the MSC8112 User’s Guide and MSC8112 Reference Manual. For additional 
information, refer to the MSC8113 Design Checklist (ANxxxx).

3.4 External SDRAM Selection
The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However, because of 
differences in timing characteristics among various SDRAM manufacturers, you may have use a faster speed rated SDRAM to 
assure efficient data transfer across the bus. For example, for 133 MHz operation, you may have to use 133 or 166 MHz 
SDRAM. Always perform a detailed timing analysis using the MSC8112 bus timing values and the manufacturer specifications 
for the SDRAM to ensure correct operation within your system design. The output delay listed in SDRAM specifications is 
usually given for a load of 30 pF. Scale the number to your specific board load using the typical scaling number provided by 
the SDRAM manufacturer.
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Ordering Information
3.5 Thermal Considerations
An estimation of the chip-junction temperature, TJ, in °C can be obtained from the following:

TJ = TA + (RθJA × PD) Eqn. 1

where

TA = ambient temperature near the package (°C)
RθJA 

= junction-to-ambient thermal resistance (°C/W)
PD = PINT + PI/O = power dissipation in the package (W)

PINT 
= IDD × VDD = internal power dissipation (W)

PI/O 
= power dissipated from device on output pins (W)

The power dissipation values for the MSC8112 are listed in Table 4. The ambient temperature for the device is the air 
temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC 
standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the 
value determined on a single layer board and the value obtained on a board with two planes. The value that more closely 
approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). 
The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a 
board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm2 with natural 
convection) and well separated components. Based on an estimation of junction temperature using this technique, determine 
whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the 
device thermal junction temperature below its maximum. If TJ appears to be too high, either lower the ambient temperature or 
the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small 
diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted 
black. The MSC8112 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. 
Use the following equation to determine TJ:

TJ = TT + (θJA × PD) Eqn. 2

where

TT = thermocouple (or infrared) temperature on top of the package (°C)

θJA 
= thermal characterization parameter (°C/W)

PD = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order. 

Part Package Type
Core 

Voltage
Operating 

Temperature

Core 
Frequency 

(MHz)

Order Number

Lead-Free Lead-Bearing

MSC8112 Flip Chip Plastic Ball Grid Array (FC-PBGA) 1.1 V –40° to 105°C 300 MSC8112TVT2400V MSC8112TMP2400V
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Package Information
5 Package Information

Figure 35. MSC8112 Mechanical Information, 431-pin FC-PBGA Package

Notes:
1. All dimensions in millimeters.

2. Dimensioning and tolerancing 
per ASME Y14.5M–1994.

3. Features are symmetrical about 
the package center lines unless 
dimensioned otherwise.

4. Maximum solder ball diameter 
measured parallel to Datum A.

5. Datum A, the seating plane, is 
determined by the spherical 
crowns of the solder balls.

6. Parallelism measurement shall 
exclude any effect of mark on 
top surface of package.

7. Capacitors may not be present 
on all devices.

8. Caution must be taken not to 
short capacitors or exposed 
metal capacitor pads on 
package top.

9. FC CBGA (Ceramic) package 
code: 5238.
FC PBGA (Plastic) package 
code: 5263.

10.Pin 1 indicator can be in the 
form of number 1 marking or an 
“L” shape marking.
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