

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	SC140 Core
Interface	Ethernet, I ² C, TDM, UART
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	448kB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8112tmp2400v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ssignments

1 Pin Assignments

This section includes diagrams of the MSC8112 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

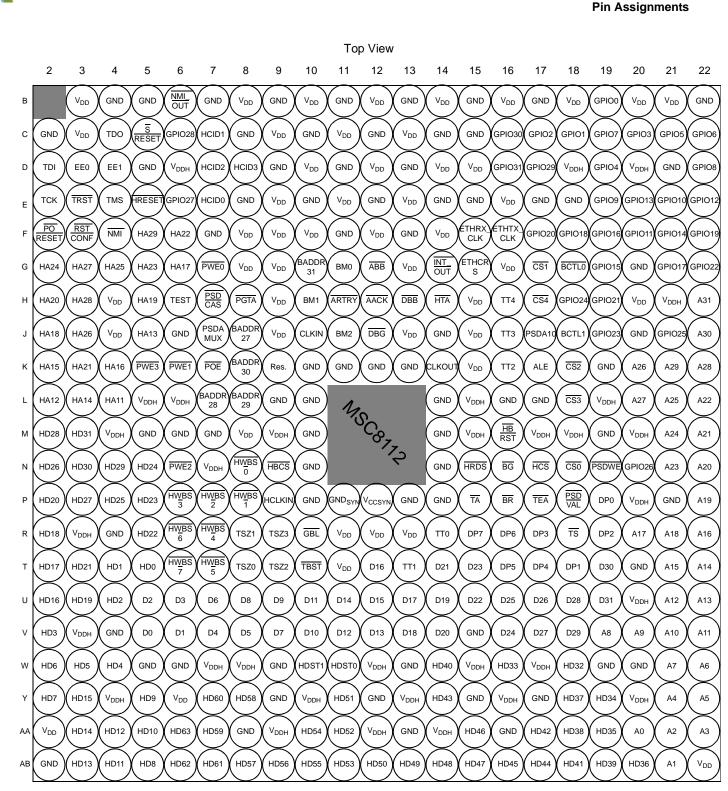


Figure 3. MSC8112 Package, Top View

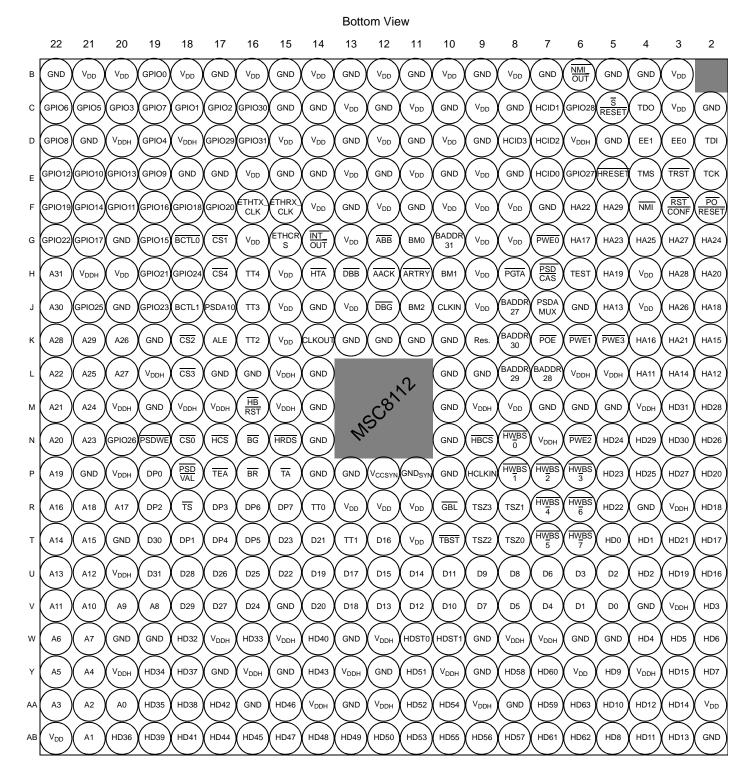


Figure 4. MSC8112 Package, Bottom View

Des.	Signal Name	Des.	Signal Name
M15	V _{DDH}	P12	V _{CCSYN}
M16	HBRST	P13	GND
M17	V _{DDH}	P14	GND
M18	V _{DDH}	P15	TA
M19	GND	P16	BR
M20	V _{DDH}	P17	TEA
M21	A24	P18	PSDVAL
M22	A21	P19	DP0/DREQ1/EXT_BR2
N2	HD26	P20	V _{DDH}
N3	HD30	P21	GND
N4	HD29	P22	A19
N5	HD24	R2	HD18
N6	PWE2/PSDDQM2/PBS2	R3	V _{DDH}
N7	V _{DDH}	R4	GND
N8	HWBS0/HDBS0/HWBE0/HDBE0	R5	HD22
N9	HBCS	R6	HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6
N10	GND	R7	HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4
N14	GND	R8	TSZ1
N15	HRDS/HRW/HRDE	R9	TSZ3
N16	BG	R10	IRQ1/GBL
N17	HCS	R11	V _{DD}
N18	CS0	R12	V _{DD}
N19	PSDWE/PGPL1	R13	V _{DD}
N20	GPIO26/TDM0RDAT	R14	TT0/HA7
N21	A23	R15	IRQ7/DP7/DREQ4
N22	A20	R16	IRQ6/DP6/DREQ3
P2	HD20	R17	IRQ3/DP3/DREQ2/EXT_BR3
P3	HD27	R18	TS
P4	HD25	R19	IRQ2/DP2/DACK2/EXT_DBG2
P5	HD23	R20	A17
P6	HWBS3/HDBS3/HWBE3/HDBE3	R21	A18
P7	HWBS2/HDBS2/HWBE2/HDBE2	R22	A16
P8	HWBS1/HDBS1/HWBE1/HDBE1	T2	HD17
P9	HCLKIN	Т3	HD21
P10	GND	T4	HD1/DSISYNC
P11	GND _{SYN}	T5	HD0/SWTE

Table 1. MSC8112 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
T6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
T8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	TT1	V7	D4
T14	D21	V8	D5
T15	D23	V9	D7
T16	IRQ5/DP5/DACK4/EXT_BG3	V10	D10
T17	IRQ4/DP4/DACK3/EXT_DBG3	V11	D12
T18	IRQ1/DP1/DACK1/EXT_BG2	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	А9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V _{DDH}
U14	D19	W8	V _{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V _{DDH}
U19	D31	W13	GND
U20	V _{DDH}	W14	HD40/D40/ETHRXD0

Table 1. MSC8112 Signal Listing by Ball Designator (continued)

Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8112 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8112.

Symbol	Value	Unit
V _{DD}	-0.2 to 1.6	V
V _{DDH}	-0.2 to 4.0	V
V _{IN}	-0.2 to 4.0	V
TJ	105	°C
TJ	-40	°C
T _{STG}	-55 to +150	°C
	V _{DD} V _{DDH} V _{IN} T _J T _J	V _{DD} -0.2 to 1.6 V _{DDH} -0.2 to 4.0 V _{IN} -0.2 to 4.0 T _J 105 T _J -40

Notes: 1. Functional operating conditions are given in Table 3.

2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.

3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T_J).

Characteristic	Symbol	Min	Typical	Max	Unit
Input high voltage ¹ , all inputs except CLKIN	V _{IH}	2.0	_	3.465	V
Input low voltage ¹	V _{IL}	GND	0	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.0	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0	0.8	V
Input leakage current, V _{IN} = V _{DDH}	I _{IN}	-1.0	0.09	1	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, $V_{IL} = 0.8 V^2$	١ _L	-1.0	0.09	1	μA
Signal high input current, $V_{IH} = 2.0 V^2$	Ι _Η	-1.0	0.09	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$, except open drain pins	V _{OH}	2.0	3.0	_	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	—	0	0.4	V
V _{CCSYN} PLL supply current	IVCCSYN	—	2	4	mA
Internal supply current: Wait mode Stop mode	I _{DDW} I _{DDS}		375 ³ 290 ³		mA mA
Typical power 300 MHz at 1.1 V ⁴	Р	—	554	_	mW

Table 5. DC Electrical Characteristics

Notes: 1. See Figure 5 for undershoot and overshoot voltages.

2. Not tested. Guaranteed by design.

3. Measured for 1.1 V core at 25°C junction temperature.

4. The typical power values were calculated using a power calculator configured for two cores performing an EFR code with the device running at the specified operating frequency and a junction temperature of 25°C. No peripherals were included. The calculator was created using CodeWarrior[®] 2.5. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Section 3 of this document and in *MSC8102*, *MSC8122*, and *MSC8126 Thermal Management Design Guidelines* (AN2601).

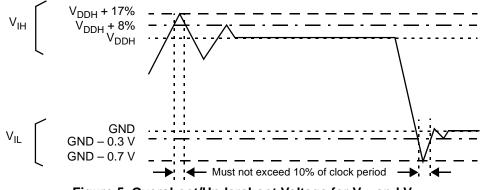


Figure 5. Overshoot/Undershoot Voltage for V_{IH} and V_{IL}

rical Characteristics

2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

2.5.1 Output Buffer Impedances

Table 6. Output Buffer Impedances

Output Buffers	Typical Impedance (Ω)			
System bus	50			
Memory controller	50			
Parallel I/O	50			
Note: These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.				

2.5.2 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. Section 2.5.3 describes the clocking characteristics. Section 2.5.4 describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8112 device:

- **PORESET** and **TRST** must be asserted externally for the duration of the power-up sequence. See **Table 11** for timing.
- If possible, bring up the V_{DD} and V_{DDH} levels together. For designs with separate power supplies, bring up the V_{DD} levels and then the V_{DDH} levels (see **Figure 7**).
- CLKIN should start toggling at least 16 cycles (starting after V_{DDH} reaches its nominal level) before PORESET deassertion to guarantee correct device operation (see Figure 6 and Figure 7).
- CLKIN must not be pulled high during V_{DDH} power-up. CLKIN can toggle during this period.
- **Note:** See Section 3.1 for start-up sequencing recommendations and Section 3.2 for power supply design recommendations.

The following figures show acceptable start-up sequence examples. Figure 6 shows a sequence in which V_{DD} and V_{DDH} are raised together. Figure 7 shows a sequence in which V_{DDH} is raised after V_{DD} and CLKIN begins to toggle as V_{DDH} rises.

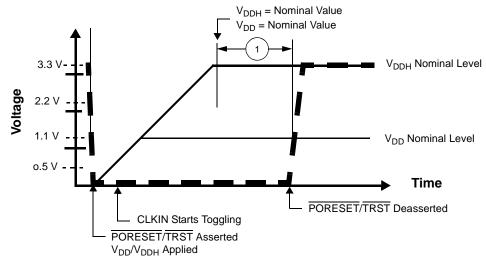


Figure 6. Start-Up Sequence: V_{DD} and V_{DDH} Raised Together

rical Characteristics

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Characteristic	Maximum in MHz		
Core frequency	300		
Reference frequency (REFCLK)	100		
Internal bus frequency (BLCK)	100		
DSI clock frequency (HCLKIN)	HCLKIN ≤ (min{70 MHz, CLKOUT})		
External clock frequency (CLKIN or CLKOUT)	100		

Table 7. Maximum Frequencies

Table 8. Clock Frequencies

Characteristics	Symbol	Min	Мах
CLKIN frequency	F _{CLKIN}	20	100
BCLK frequency	F _{BCLK}	40	100
Reference clock (REFCLK) frequency	F _{REFCLK}	40	100
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	100
SC140 core clock frequency	F _{CORE}	200	300
Note: The rise and fall time of external clocks should be 3 ns maximum			

Table 9. System Clock Parameters

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	-	3	ns
CLKIN period jitter ¹	-	150	ps
CLKIN jitter spectrum	150	—	KHz
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800	1200	MHz
CLKOUT frequency jitter ¹	-	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	—	500	ps
Notes:1.Peak-to-peak.2.Not tested. Guaranteed by design.		<u>. </u>	

2.5.4 Reset Timing

The MSC8112 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8112 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

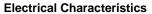
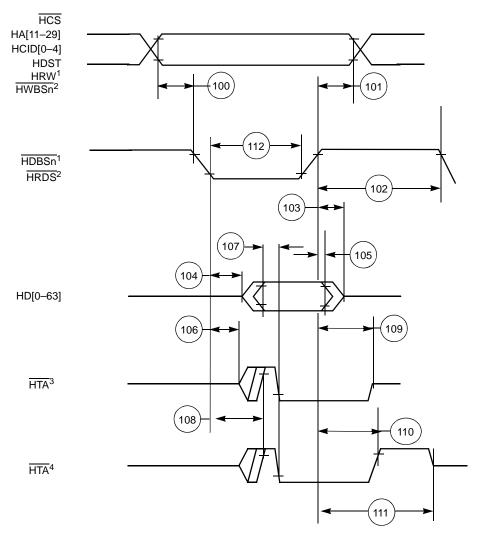
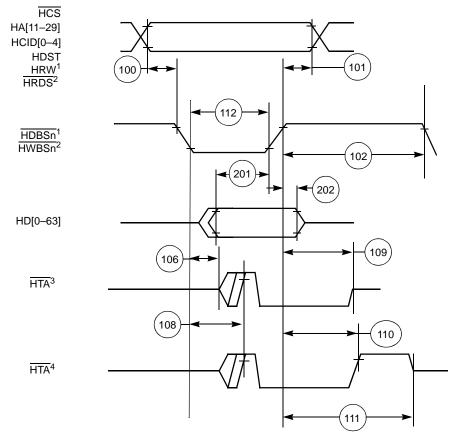



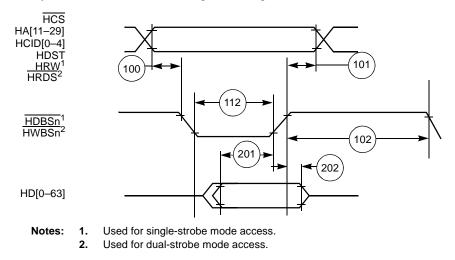
Figure 14 shows DSI asynchronous read signals timing.


Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

Figure 15 shows DSI asynchronous write signals timing.



Notes: 1. Used for single-strobe mode access.

- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

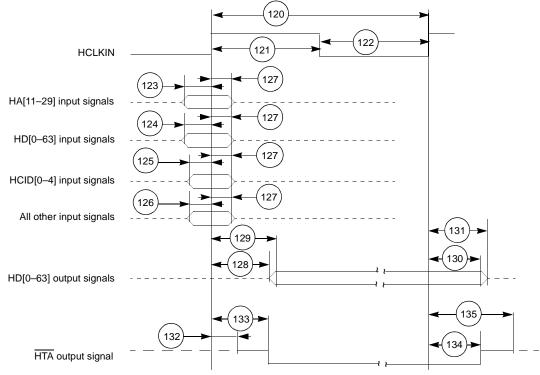

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mode	Table 19.	. DSI Inputs	in Synchronous	Mode
--	-----------	--------------	----------------	------

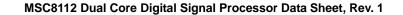

No.	Characteristic	Expression	1.1 V Core		Units
NO.	Cildracteristic	Expression	Min	Max	Units
120	HCLKIN cycle time ^{1,2}	HTC	10.0	55.6	ns
121	HCLKIN high pulse width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
122	HCLKIN low pulse width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
123	HA[11–29] inputs set-up time	—	1.2	_	ns
124	HD[0-63] inputs set-up time	—	0.6	_	ns
125	HCID[0-4] inputs set-up time	—	1.3	_	ns
126	All other inputs set-up time	—	1.2	_	ns
127	All inputs hold time	—	1.5	_	ns
Notes:	 Values are based on a frequency range of 18–70 MHz. Refer to Table 7 for HCLKIN frequency limits. 				

Table 20. DSI Outputs in Synchronous Mode

No.	Characteristic	1.1 V	Units	
NO.		Min	Max	Gints
128	HCLKIN high to HD[0–63] output active	2.0	_	ns
129	HCLKIN high to HD[0–63] output valid	—	7.6	ns
130	HD[0–63] output hold time	1.7	_	ns
131	HCLKIN high to HD[0–63] output high impedance – 8.3			
132	HCLKIN high to HTA output active	2.2	_	ns
133	HCLKIN high to HTA output valid	—	7.4	ns
134	HTA output hold time	1.7	_	ns
135	HCLKIN high to HTA high impedance	_	7.5	ns

TDM Timing 2.5.7

Ne	Characteristic	Expression	1.1 V Core		Unite
No.	Characteristic	Expression	Min	Мах	Units
300	TDMxRCLK/TDMxTCLK	TC1	16	—	ns
301	TDMxRCLK/TDMxTCLK high pulse width	$(0.5\pm0.1) imes TC$	7	—	ns
302	TDMxRCLK/TDMxTCLK low pulse width	$(0.5\pm0.1) imes TC$	7	—	ns
303	TDM receive all input set-up time		1.3	—	ns
304	TDM receive all input hold time		1.0	—	ns
305	TDMxTCLK high to TDMxTDAT/TDMxRCLK output active ^{2,3}		2.8	—	ns
306	TDMxTCLK high to TDMxTDAT/TDMxRCLK output		_	10.0	ns
307	All output hold time ⁴		2.5	—	ns
308	TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance ^{2,3}		—	10.7	ns
309	TDMxTCLK high to TDMXTSYN output valid ²		_	9.7	ns
310	TDMxTSYN output hold time ⁴		2.5	—	ns
Notes:	 Devices operating at 300 MHz are limited to a maximum TDMx Values are based on 20 pF capacitive load. When configured as an output, TDMxRCLK acts as a second d 				letails.

Values are based on 10 pF capacitive load. 4.

TDMxRCLK

TDMxTSYN

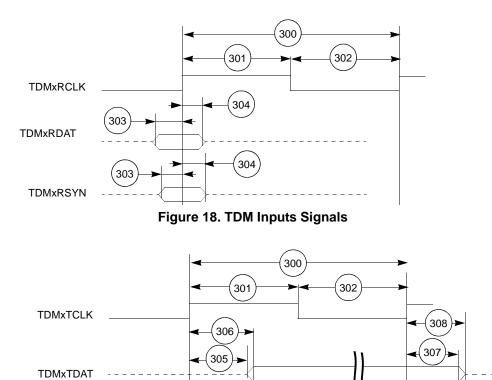


Figure 19. TDM Output Signals

(309

310

2.5.8 UART Timing

No.	Characteristics	Expression	Min	Max	Un it
400	URXD and UTXD inputs high/low duration	16 × T _{REFCLK}	160.0	—	ns
401	URXD and UTXD inputs rise/fall time			10	ns
402	UTXD output rise/fall time			10	ns

Figure 20. UART Input Timing

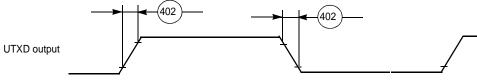


Figure 21. UART Output Timing

2.5.9 Timer Timing

Table 23. Timer Timing

No.	Characteristics		Ref = CLKIN	
NO.	Characteristics	Min	Max	Unit
500	TIMERx frequency	10.0	—	ns
501	TIMERx Input high period	4.0	—	ns
502	TIMERx Output low period	4.0	—	ns
503	TIMERx Propagations delay from its clock input	3.1	9.5	ns

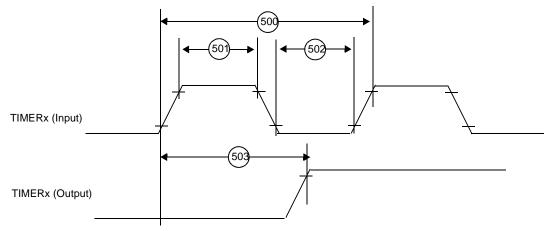


Figure 22. Timer Timing

2.5.10.3 RMII Mode

No	No. Characteristics		1.1 V Core	
NO.			Max	Unit
806	ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising edge set-up time	1.6	—	ns
807	ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold time	1.6	—	ns
811	ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.	3	12.5	ns

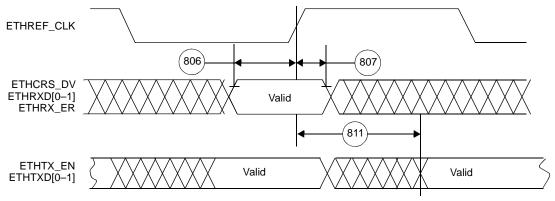
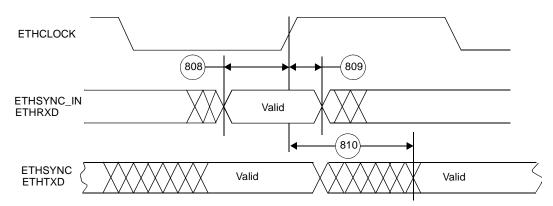


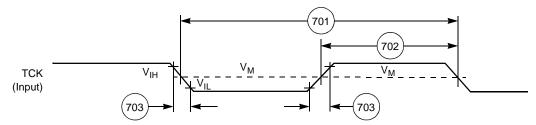
Figure 25. RMII Mode Signal Timing

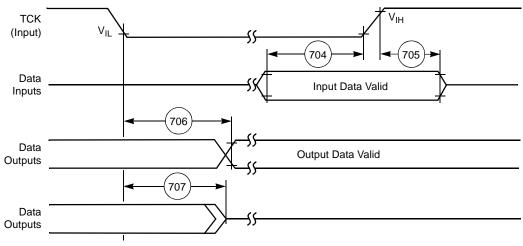
2.5.10.4 SMII Mode

Table 27	. SMII Mod	e Signal Timing
----------	------------	-----------------

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	1.0		ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time 1.0 — ns			
810	ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay 1.5 ¹ 6			
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			




Figure 26. SMII Mode Signal Timing


2.5.13 JTAG Signals

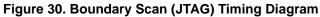

No.	Characteristics	All frequencies		Unit	
			Max		
700	TCK frequency of operation $(1/(T_{C} \times 4); \text{ maximum 25 MHz})$	0.0	25	MHz	
701	TCK cycle time	40.0	—	ns	
702	TCK clock pulse width measured at V_{M} = 1.6 V				
	• High	20.0	—	ns	
	• Low	16.0	—	ns	
703	TCK rise and fall times	0.0	3.0	ns	
704	Boundary scan input data set-up time	5.0	—	ns	
705	Boundary scan input data hold time	20.0	—	ns	
706	TCK low to output data valid	0.0	30.0	ns	
707	TCK low to output high impedance	0.0	30.0	ns	
708	TMS, TDI data set-up time	5.0	—	ns	
709	TMS, TDI data hold time	20.0		ns	
710	TCK low to TDO data valid	0.0	20.0	ns	
711	TCK low to TDO high impedance	0.0	20.0	ns	
712	TRST assert time	100.0		ns	
713	TRST set-up time to TCK low	30.0	_	ns	
Note:	All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

Table 30. JTAG Timing

Figure 29. Test Clock Input Timing Diagram

During the power-up sequence, if V_{DD} rises before V_{DDH} (see **Figure 6**), current can pass from the V_{DD} supply through the device ESD protection circuits to the V_{DDH} supply. The ESD protection diode can allow this to occur when V_{DD} exceeds V_{DDH} by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

- Never allow V_{DD} to exceed $V_{DDH} + 0.8V$.
- Design the V_{DDH} supply to prevent reverse current flow by adding a minimum 10 Ω resistor to GND to limit the current. Such a design yields an initial V_{DDH} level of $V_{DD} 0.8$ V before it is enabled.

After power-up, V_{DDH} must not exceed V_{DD}/V_{CCSYN} by more than 2.6 V.

3.2 Power Supply Design Considerations

When implementing a new design, use the guidelines described in the *MSC8112 Design Checklist* (AN3374 for optimal system performance. *MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples* (AN2937) provides detailed design information. See Section 2.5.2 for start-up timing specifications.

Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved by using the following guidelines:

- For the core supply, use a voltage regulator rated at 1.1 V with nominal rating of at least 3 A. This rating does not reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has better voltage recovery time than supplies with lower current ratings.
- Decouple the supply using low-ESR capacitors mounted as close as possible to the socket. **Figure 33** shows three capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number. If possible, mount at least one of the capacitors directly below the MSC8112 device.

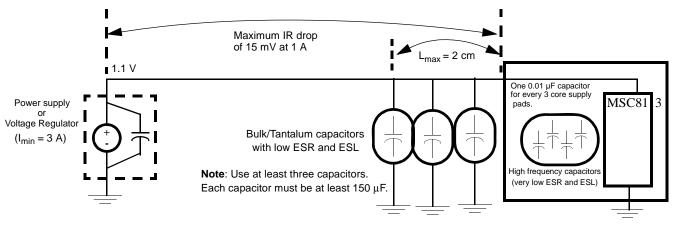


Figure 33. Core Power Supply Decoupling

Each V_{CC} and V_{DD} pin on the MSC8112 device should have a low-impedance path to the board power supply. Similarly, each GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the chip. The V_{CC} power supply should have at least four 0.1 µF by-pass capacitors to ground located as closely as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} , V_{DD} , and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MSC8112 have fast rise and fall times. PCB trace interconnection length should be minimized to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC}, V_{DD}, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.

ware Design Considerations

Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins: V_{CCSYN} -GND_{SYN}. To ensure internal clock stability, filter the power to the V_{CCSYN} input with a circuit similar to the one in **Figure 34**. For optimal noise filtering, place the circuit as close as possible to V_{CCSYN} . The 0.01- μ F capacitor should be closest to V_{CCSYN} , followed by the 10- μ F capacitor, the 10-nH inductor, and finally the 10- Ω resistor to V_{DD} . These traces should be kept short and direct. Provide an extremely low impedance path to the ground plane for GND_{SYN}. Bypass GND_{SYN} to V_{CCSYN} by a 0.01- μ F capacitor located as close as possible to the chip package. For best results, place this capacitor on the backside of the PCB aligned with the depopulated void on the MSC8112 located in the square defined by positions, L11, L12, L13, M11, M12, M13, N11, N12, and N13.

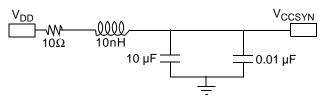


Figure 34. V_{CCSYN} Bypass

3.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to V_{DDH} or GND, except for the following:

- If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be disconnected.
- When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down, depending on design requirements.
- HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the DCR[DSRFA] bit is set.
- When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/ HDBE[1-3] and HWBS[4-7]/HDBS[4-7]/HWBE[4-7]/HDBE[4-7]/PWE[4-7]/PSDDQM[4-7]/PBS[4-7].
- When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1-3]/HDBS[1-3]/HDBE[1-3]/HDBE[1-3] must be pulled up.
- When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.
- When the DSI uses sliding window address mode (DCR[SLDWA] = 1), the external HA[11–13] signals must be connected (tied) to the correct voltage levels so that the host can perform the first access to the DCR. After reset, the DSI expects full address mode (DCR[SLDWA] = 0). The DCR address in the DSI memory map is 0x1BE000, which requires the following connections:
 - HA11 must be pulled high (1)
 - HA12 must be pulled high (1)
 - HA13 must be pulled low (0)
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.
 - In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):
 - BG, DBG, and TS can be left unconnected.
 - EXT_BG[2-3], EXT_DBG[2-3], and GBL can be left unconnected if they are multiplexed to the system bus functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.
 - BR must be pulled up.
 - EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.
 - If there is an external bus master (BCR[EBM] = 1):
 - BR, BG, DBG, and TS must be pulled up.
 - EXT_BR[2-3], EXT_BG[2-3], and EXT_DBG[2-3] must be pulled up if multiplexed to the system bus functionality.
- In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other modes, they must be pulled up.

ring Information

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D)$$
 Eqn. 1

where

$$\begin{split} T_A &= \text{ambient temperature near the package (°C)} \\ R_{\Theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ P_D &= P_{INT} + P_{I/O} = \text{power dissipation in the package (W)} \\ P_{INT} &= I_{DD} \times V_{DD} = \text{internal power dissipation (W)} \\ P_{I/O} &= \text{power dissipated from device on output pins (W)} \end{split}$$

The power dissipation values for the MSC8112 are listed in **Table 4**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8112 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J:

$$T_J = T_T + (\theta_{JA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Core	Operating	Core Order Numbe		Number
Fait	rackage type	Voltage	Temperature	(MHz)	Lead-Free	Lead-Bearing
MSC8112	Flip Chip Plastic Ball Grid Array (FC-PBGA)	1.1 V	–40° to 105°C	300	MSC8112TVT2400V	MSC8112TMP2400V

NP 🛛

6

uct Documentation

Product Documentation

- *MSC8112 Technical Data Sheet* (MSC8112). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8112 device.
- *MSC8112 Reference Manual* (MSC8112RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8112 device.
- *SC140 DSP Core Reference Manual*. Covers the SC140 core architecture, control registers, clock registers, program control, and instruction set.

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description
0	5/2008	Initial release.
1	12/2008	• Clarified the wording of note 2 in Table 15 on p. 23.