

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f609-e-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	this location	uses content	ts of FSR to a	address data i	memory (not	a physical re	gister)	xxxx xxxx	25, 116
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	ounter's (PC)	Least Signifi	icant Byte					0000 0000	25, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Data	a Memory Ac	Idress Pointe	er					xxxx xxxx	25, 116
85h	TRISIO			TRISIO5	TRISIO4	TRISIO3 ⁽⁴⁾	TRISIO2	TRISIO1	TRISIO0	11 1111	44, 116
86h	_	Unimplemen	Jnimplemented								_
87h	_	Unimplemen	Jnimplemented							_	_
88h	_	Unimplemen	nted							_	_
89h	_	Unimplemen	Inimplemented							—	—
8Ah	PCLATH	_	— — Write Buffer for upper 5 bits of Program Counter							0 0000	25, 116
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF ⁽³⁾	0000 0000	20, 116
8Ch	PIE1	_	ADIE	CCP1IE	_	CMIE	_	TMR2IE	TMR1IE	-00- 0-00	21, 116
8Dh	_	Unimplemented							—	—	
8Eh	PCON	_	—	—	—	_	—	POR	BOR	dd	23, 116
8Fh	_	Unimplemen	nted							_	_
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	41, 116
91h	_	Unimplemen	nted							_	_
92h	PR2	Timer2 Mod	ule Period R	egister						1111 1111	65, 116
93h	APFCON	_	_	_	T1GSEL	_	_	P1BSEL	P1ASEL	000	21, 116
94h	_	Unimplemen	nted							_	_
95h	WPU ⁽²⁾	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	46, 116
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	46, 116
97h	_	Unimplemen	nted							_	_
98h	PMCON1 ⁽⁷⁾	_	—	—	—	_	WREN	WR	RD	000	29
99h	PMCON2 ⁽⁷⁾	Program Me	emory Contro	l Register 2	(not a physic	al register).					—
9Ah	PMADRL ⁽⁷⁾	PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0	0000 0000	28
9Bh	PMADRH ⁽⁷⁾	_	_	_	—	_	PMADRH2	PMADRH1	PMADRH0	000	28
9Ch	PMDATL ⁽⁷⁾	PMDATL7	PMDATL6	PMDATL5	PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATL0	0000 0000	28
9Dh	PMDATH ⁽⁷⁾	—	—	Program M	emory Data F	Register High	Byte.			00 0000	28
9Eh	ADRESL ^(5, 6)	Least Signif	icant 2 bits o	f the left shift	ed result or 8	bits of the rig	ght shifted res	sult		xxxx xxxx	85, 117
9Fh	ANSEL	—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	45, 117
Logon			sations road :			l		l	1	1	·

TABLE 2-4: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. GP3 pull-up is enabled when MCLRE is '1' in the Configuration Word register. Legend: Note 1:

2:

MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch 3: exists.

TRISIO3 always reads as '1' since it is an input only pin. 4:

Read only register. 5:

PIC12F615/617/HV615 only. 6:

7: PIC12F617 only.

3.0 FLASH PROGRAM MEMORY SELF READ/SELF WRITE CONTROL (FOR PIC12F617 ONLY)

The Flash program memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (see Registers 3-1 to 3-5). There are six SFRs used to read and write this memory:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When interfacing the program memory block, the PMDATL and PMDATH registers form a two-byte word which holds the 14-bit data for read/write, and the PMADRL and PMADRH registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices have 2K words of program Flash with an address range from 0000h to 07FFh.

The program memory allows single word read and a by four word write. A four word write automatically erases the row of the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the Flash program memory.

Depending on the settings of the Flash Program Memory Enable (WRT<1:0>) bits, the device may or may not be able to write certain blocks of the program memory, however, reads of the program memory are allowed.

When the Flash program memory Code Protection (\overline{CP}) bit in the Configuration Word register is enabled, the program memory is code-protected, and the device programmer (ICSPTM) cannot access data or program memory.

3.1 PMADRH and PMADRL Registers

The PMADRH and PMADRL registers can address up to a maximum of 8K words of program memory.

When selecting a program address value, the Most Significant Byte (MSB) of the address is written to the PMADRH register and the Least Significant Byte (LSB) is written to the PMADRL register.

3.2 PMCON1 and PMCON2 Registers

PMCON1 is the control register for the data program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

PMCON2 is not a physical register. Reading PMCON2 will read all '0's. The PMCON2 register is used exclusively in the Flash memory write sequence.

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1		
—	—	—	—	ANS3	—	ANS1	ANS0		
bit 7 bit									

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-4	Unimplemented: Read as '0'
bit 3	ANS3: Analog Select Between Analog or Digital Function on Pin GP4 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
bit 2	Unimplemented: Read as '0'
bit 1	 ANS1: Analog Select Between Analog or Digital Function on Pin GP1 1 = Analog input. Pin is assigned as analog input.⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or special function.
bit 0	 ANS0: Analog Select Between Analog or Digital Function on Pin GP0 0 = Digital I/O. Pin is assigned to port or special function. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 5-4: ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615)

U-0	R/W-1						
—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented : Read as '0'
bit 6-4	ADCS<2:0>: A/D Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32
	x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64
bit 3-0	ANS<3:0> : Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
Note 1:	Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on- change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

6.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

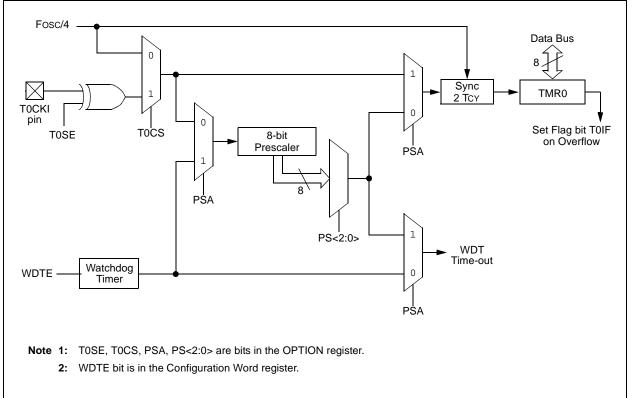
Figure 6-1 is a block diagram of the Timer0 module.

6.1 Timer0 Operation

When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

6.1.1 8-BIT TIMER MODE

When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to '0'.


When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

6.1.2 8-BIT COUNTER MODE

When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to '1'.

FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

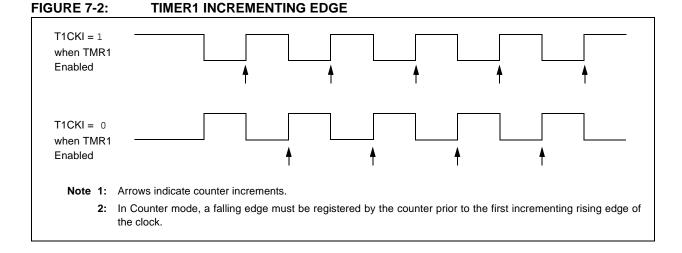
7.10 **ECCP Special Event Trigger** (PIC12F615/617/HV615 only)

If a ECCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The ECCP module may still be configured to generate a ECCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

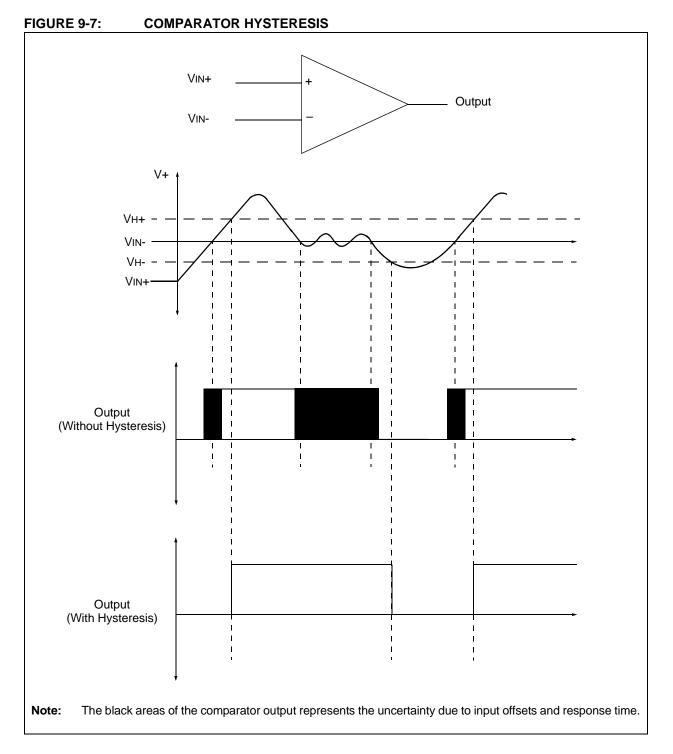
Timer1 should be synchronized to the Fosc to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the ECCP, the write will take precedence.


For more information, see Section 11.0 "Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)".

7.11 **Comparator Synchronization**

The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module.


When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes.

For more information, see Section 9.0 "Comparator Module".

9.11 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

REGISTER 10-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 (READ-ONLY)

| R-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES9 | ADRES8 | ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 10-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 (READ-ONLY)

R-x	R-x	U-0	U-0	U-0	U-0	U-0	U-0
ADRES1	ADRES0	—	—	—	—	—	—
bit 7							bit 0
l egend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower 2 bits of 10-bit conversion result
bit 5-0	Unimplemented: Read as '0'

REGISTER 10-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 (READ-ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	R-x	R-x
—	—	—	—	—	—	ADRES9	ADRES8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ADRES<9:8>: ADC Result Register bits

Upper 2 bits of 10-bit conversion result

REGISTER 10-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 (READ-ONLY)

| R-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits

Lower 8 bits of 10-bit conversion result

TABLE 10-2: SUMMARY OF ASSOCIATED ADC REGISTERS

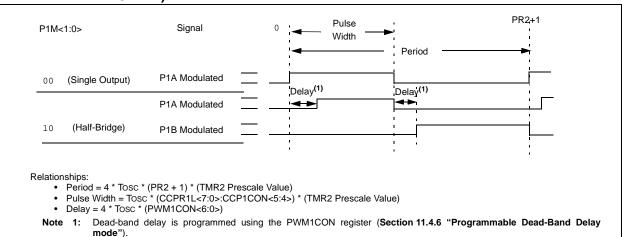
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0 ⁽¹⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	00-0 0000
ANSEL	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
ADRESH ^(1,2)	A/D Resu	It Register	High Byte						xxxx xxxx	uuuu uuuu
ADRESL ^(1,2)	A/D Resu	ılt Register	Low Byte						xxxx xxxx	uuuu uuuu
GPIO	—	—	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	x0 x000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	0000 0000
PIE1	—	- ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - CMIE - TMR2IE ⁽¹⁾ TMR1IE								-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
TRISIO	_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: x = unknown, u = unchanged, – = unimplemented read as '0'. Shaded cells are not used for ADC module.

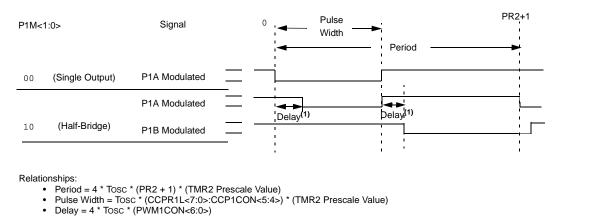
Note 1: For PIC12F615/617/HV615 only.

2: Read Only Register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	all o	e on ther sets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00	0000	0-00	0000
CCPR1L	Capture/C	ompare/PW	M Register	1 Low Byte					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register	1 High Byte					xxxx	xxxx	uuuu	uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000	0000	0000	0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00-	0-00	-00-	0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00-	0-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
TMR1L	Holding Re	lolding Register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	xxxx	uuuu	uuuu
TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11	1111	11	1111


TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.


Note 1: For PIC12F615/617/HV615 only.

PIC12F609/615/617/12HV609/615

FIGURE 11-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

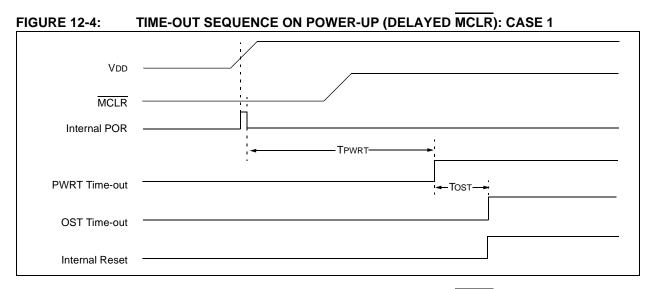
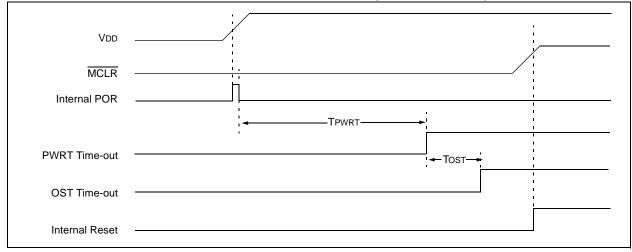


FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)



Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 "Programmable Dead-Band Delay mode").

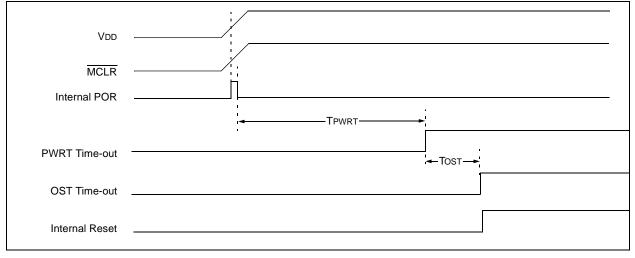

PIC12F609/615/617/12HV609/615

FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

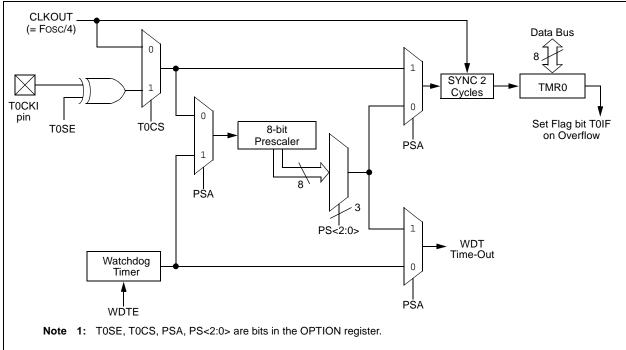


FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

12.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time out occurs.

FIGURE 12-2: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-8: WDT STATUS

Conditions	WDT
WDTE = 0	
CLRWDT Command	Cleared
Oscillator Fail Detected	Cleared
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
CONFIG	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	—	—

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of all Configuration Word register bits.

15.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

15.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

15.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

15.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

15.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

16.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +6.5V
Voltage on MCLR with respect to Vss	-0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	95 mA
Maximum current into Vod pin	95 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by GPIO	90 mA
Maximum current sourced GPIO	90 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VD IOL).	⊡ – Vон) х Iон} + ∑(Vol х

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

16.1 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC12F609/615/617	2.0	—	5.5	V	Fosc < = 4 MHz		
D001		PIC12HV609/615	2.0	—	(2)	V	Fosc < = 4 MHz		
D001B		PIC12F609/615/617	2.0	—	5.5	V	Fosc < = 8 MHz		
D001B		PIC12HV609/615	2.0	—	(2)	V	Fosc < = 8 MHz		
D001C		PIC12F609/615/617	3.0	—	5.5	V	Fosc < = 10 MHz		
D001C		PIC12HV609/615	3.0	—	(2)	V	Fosc < = 10 MHz		
D001D		PIC12F609/615/617	4.5	_	5.5	V	Fosc < = 20 MHz		
D001D		PIC12HV609/615	4.5	—	(2)	V	Fosc < = 20 MHz		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3.1 "Power-on Reset (POR)" for details.		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See Section 12.3.1 "Power-on Reset (POR)" for details.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: User defined. Voltage across the shunt regulator should not exceed 5V.

16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS			Standard Operating Con Operating temperature		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		5°C for industrial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 Vdd	V	(NOTE 1)
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports:		_			
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \leq V \text{DD} \leq 5.5 \text{V}$
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(NOTE 1)
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	_	± 0.1	± 1	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		GP3/MCLR ^(3,4)	—	±0.7	± 5	μΑ	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	IPUR	GPIO Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D080		I/O ports	_	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
	Vон	Output High Voltage	VDD - 0.7	—	—	V	IOH = -2.5mA, VDD = 4.5V, -40°С to +125°С
D090		I/O ports ⁽²⁾	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C

* These parameters are characterized but not tested.

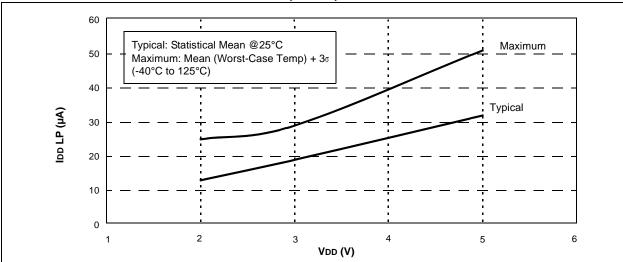
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

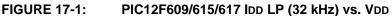
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

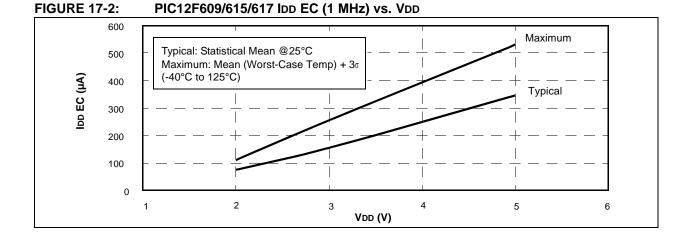
2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.

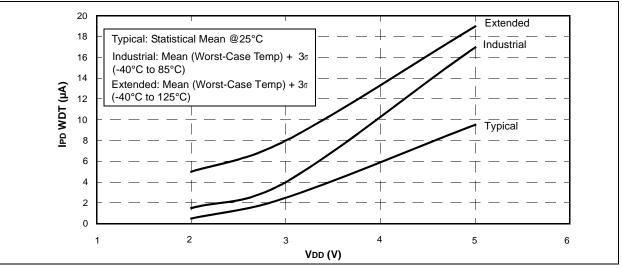

5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

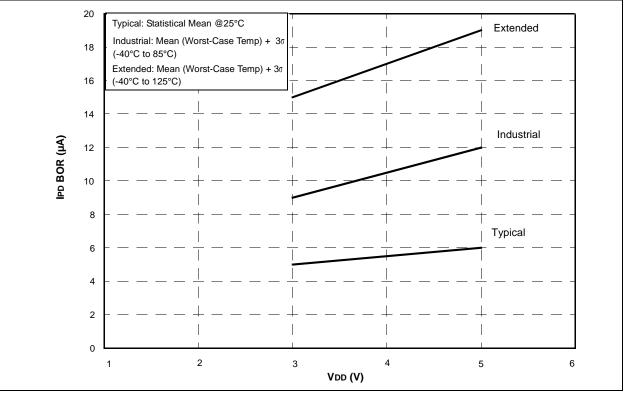

6: Applies to PIC12F617 only.


17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.





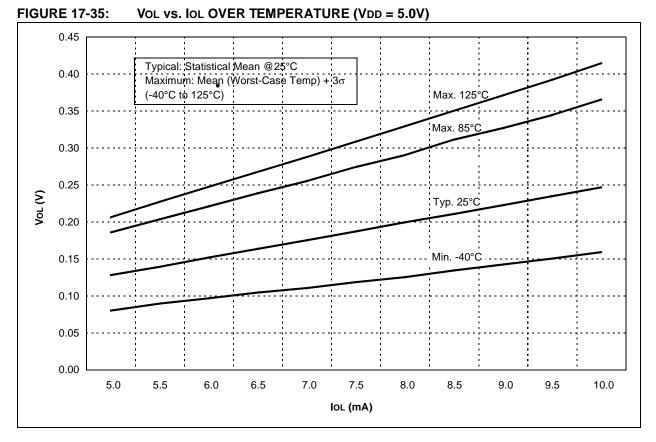
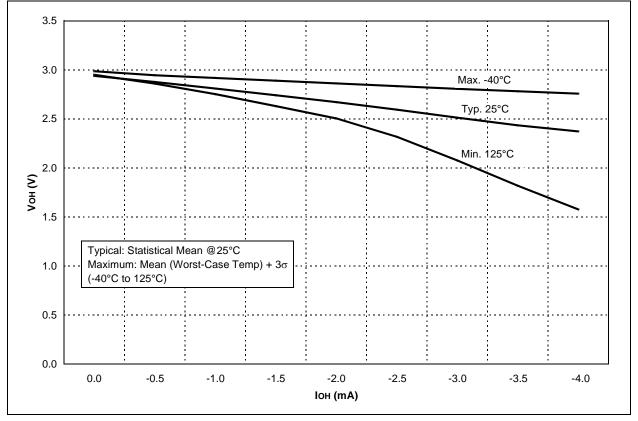

PIC12F609/615/617/12HV609/615

FIGURE 17-12: PIC12F609/615/617 IPD WDT vs. VDD



© 2010 Microchip Technology Inc.

INDEX

Α	
A/D	
Specifications	. 164. 165
Absolute Maximum Ratings	
AC Characteristics	
Industrial and Extended	156
Load Conditions	155
ADC	
Acquisition Requirements	
Associated registers	
Block Diagram	79
Calculating Acquisition Time	
Channel Selection	80
Configuration	
Configuring Interrupt	
Conversion Clock	
Conversion Procedure	
Internal Sampling Switch (Rss) Impedance	
Interrupts	
Operation	
Operation During Sleep	
Port Configuration	
Reference Voltage (VREF)	
Result Formatting	
Source Impedance	
Special Event Trigger	
Starting an A/D Conversion	
ADC (PIC12F615/617/HV615 Only)	
ADCON0 Register	
ADRESH Register (ADFM = 0)	
ADRESH Register (ADFM = 1)	
ADRESL Register (ADFM = 0)	
ADRESL Register (ADFM = 1)	
Analog Input Connection Considerations	
Analog-to-Digital Converter. See ADC	
ANSEL Register (PIC12F609/HV609)	
ANSEL Register (PIC12F615/617/HV615)	
APFCON Register	24
Assembler	4.40
MPASM Assembler	140

В

Block Diagrams	
(CCP) Capture Mode Operation	
ADC	79
ADC Transfer Function	87
Analog Input Model	68, 87
Auto-Shutdown	
CCP PWM	94
Clock Source	37
Comparator	67
Compare	92
Crystal Operation	39
External RC Mode	40
GP0 and GP1 Pins	47
GP2 Pins	48
GP3 Pin	49
GP4 Pin	50
GP5 Pin	51
In-Circuit Serial Programming Connections	125
Interrupt Logic	119
MCLR Circuit	111
On-Chip Reset Circuit	110

PIC12F609/12HV609	7
PIC12F615/617/12HV615	8
PWM (Enhanced)	97
Resonator Operation	39
Timer1	57, 58
Timer2	65
TMR0/WDT Prescaler	53
Watchdog Timer	122
Brown-out Reset (BOR)	112
Associated Registers	113
Specifications	160
Timing and Characteristics	159

С

C Compilers	
MPLAB C18	140
MPLAB C30	
Calibration Bits	
Capture Module. See Enhanced Capture/Compare/	
PWM (ECCP)	
Capture/Compare/PWM (CCP)	
Associated registers w/ Capture	91
Associated registers w/ Compare	
Associated registers w/ PWM	
Capture Mode	
CCP1 Pin Configuration	
Compare Mode	
CCP1 Pin Configuration	
Software Interrupt Mode	
•	
Special Event Trigger	
Timer1 Mode Selection	'
Prescaler	
PWM Mode	-
Duty Cycle	
Effects of Reset	96
Example PWM Frequencies and	
Resolutions, 20 MHZ	95
Example PWM Frequencies and	
Resolutions, 8 MHz	
Operation in Sleep Mode	
Setup for Operation	
System Clock Frequency Changes	
PWM Period	
Setup for PWM Operation	
CCP1CON (Enhanced) Register	89
Clock Sources	
External Modes	38
EC	38
HS	39
LP	39
OST	38
RC	40
XT	39
Internal Modes	40
INTOSC	40
INTOSCIO	
CMCON0 Register	
CMCON1 Register	
Code Examples	
A/D Conversion	83
Assigning Prescaler to Timer0	
Assigning Prescaler to WDT	
Changing Between Capture Prescalers	
Indirect Addressing	