

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f609-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Міскоснір PIC12F609/615/617/12HV609/615

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers

High-Performance RISC CPU:

- Only 35 Instructions to Learn:
 - All single-cycle instructions except branches
- Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Interrupt Capability
- 8-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency: 4 MHz or 8 MHz
- Power-Saving Sleep mode
- Voltage Range:
- PIC12F609/615/617: 2.0V to 5.5V
- PIC12HV609/615: 2.0V to user defined maximum (see note)
- Industrial and Extended Temperature Range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Watchdog Timer (WDT) with independent Oscillator for Reliable Operation
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- High Endurance Flash:
 - 100,000 write Flash endurance
 - Flash retention: > 40 years
- Self Read/ Write Program Memory (PIC12F617 only)

Low-Power Features:

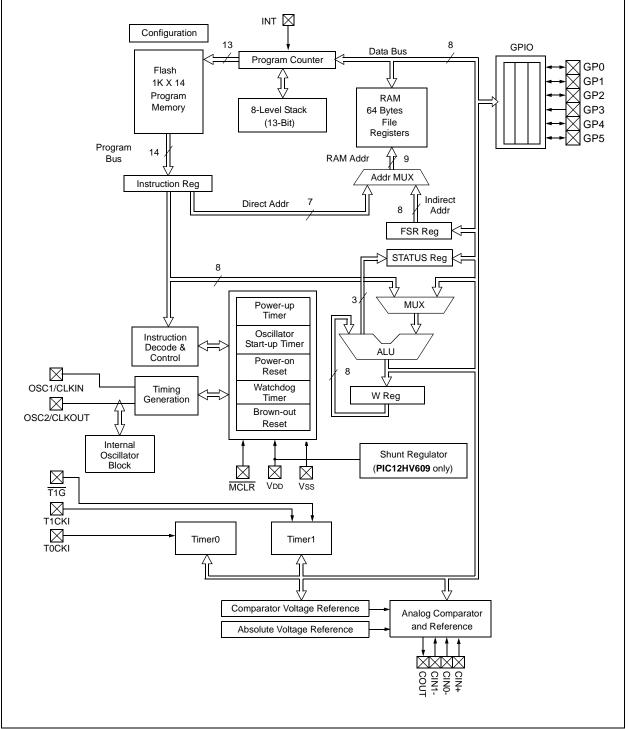
- Standby Current:
 - 50 nA @ 2.0V, typical
- Operating Current:
 - 11 μA @ 32 kHz, 2.0V, typical
 - 260 μA @ 4 MHz, 2.0V, typical
- Watchdog Timer Current:
 - 1 μA @ 2.0V, typical
 - Note: Voltage across the shunt regulator should not exceed 5V.

Peripheral Features:

- Shunt Voltage Regulator (PIC12HV609/615 only):
 - 5 volt regulation
 - 4 mA to 50 mA shunt range
- 5 I/O Pins and 1 Input Only
- High Current Source/Sink for Direct LED Drive
 - Interrupt-on-pin change or pins
 - Individually programmable weak pull-ups
- Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - Comparator inputs and output externally accessible
 - Built-In Hysteresis (software selectable)
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Timer1 Gate (count enable)
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected
 - Option to use system clock as Timer1
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins

PIC12F615/617/HV615 ONLY:

- Enhanced Capture, Compare, PWM module:
 - 16-bit Capture, max. resolution 12.5 ns
 - Compare, max. resolution 200 ns
 - 10-bit PWM with 1 or 2 output channels, 1 output channel programmable "dead time," max. frequency 20 kHz, auto-shutdown
- A/D Converter:
 - 10-bit resolution and 4 channels, samples internal voltage references
- Timer2: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler


1.0 DEVICE OVERVIEW

The PIC12F609/615/617/12HV609/615 devices are covered by this data sheet. They are available in 8-pin PDIP, SOIC, MSOP and DFN packages.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F609/HV609 (Figure 1-1, Table 1-1)
- PIC12F615/617/HV615 (Figure 1-2, Table 1-2)

Name	Function	Input Type	Output Type	Description		
GP0/AN0/CIN+/P1B/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change		
	AN0	AN		A/D Channel 0 input		
	CIN+	AN	_	Comparator non-inverting input		
	P1B	_	CMOS	PWM output		
	ICSPDAT	ST	CMOS	Serial Programming Data I/O		
GP1/AN1/CIN0-/VREF/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change		
	AN1	AN	—	A/D Channel 1 input		
	CIN0-	AN	_	Comparator inverting input		
	VREF	AN	_	External Voltage Reference for A/D		
	ICSPCLK	ST	_	Serial Programming Clock		
GP2/AN2/T0CKI/INT/COUT/CCP1/ P1A	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change		
	AN2	AN	—	A/D Channel 2 input		
	TOCKI	ST	_	Timer0 clock input		
	INT	ST	—	External Interrupt		
	COUT	_	CMOS	Comparator output		
	CCP1	ST	CMOS	Capture input/Compare input/PWM output		
	P1A	—	CMOS	PWM output		
GP3/T1G*/MCLR/VPP	GP3	TTL	—	General purpose input with interrupt-on-change		
	T1G*	ST	_	Timer1 gate (count enable), alternate pin		
	MCLR	ST		Master Clear w/internal pull-up		
	Vpp	HV	_	Programming voltage		
GP4/AN3/CIN1-/T1G/P1B*/OSC2/ CLKOUT	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change		
	AN3	AN		A/D Channel 3 input		
	CIN1-	AN	_	Comparator inverting input		
	T1G	ST		Timer1 gate (count enable)		
	P1B*	_	CMOS	PWM output, alternate pin		
	OSC2	_	XTAL	Crystal/Resonator		
	CLKOUT	_	CMOS	Fosc/4 output		
GP5/T1CKI/P1A*/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change		
	T1CKI	ST	_	Timer1 clock input		
	P1A*	_	CMOS	PWM output, alternate pin		
	OSC1	XTAL	_	Crystal/Resonator		
	CLKIN	ST	_	External clock input/RC oscillator connection		
Vdd	Vdd	Power	_	Positive supply		
Vss	Vss	Power		Ground reference		

TABLE 1-2: PIC12F615/617/HV615 PINOUT DESCRIPTION

* Alternate pin function.

Legend: AN=Analog input or output

CMOS=CMOS compatible input or output HV= High Voltage ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input

XTAL=Crystal

FIGURE 2-4: DATA MEMORY MAP OF THE PIC12F615/617/HV615

	File		File
	Address		Address
Indirect Addr. ⁽¹⁾	00h	Indirect Addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
TMR2	11h		91h
T2CON	12h	PR2	92h
CCPR1L	13h	APFCON	93h
CCPR1H	14h		94h
CCP1CON	15h	WPU	95h
PWM1CON	16h	IOC	96h
ECCPAS	17h		97h
	18h	PMCON1 ⁽²⁾	98h
VRCON	19h	PMCON2 ⁽²⁾	99h
CMCON0	1Ah	PMADRL ⁽²⁾ PMADRH ⁽²⁾	9Ah
CMCONIA	1Bh	PMADRH PMDATL ⁽²⁾	9Bh
CMCON1	1Ch	PMDATE PMDATH ⁽²⁾	9Ch
	1Dh		9Dh
ADRESH	1Eh	ADRESL	9Eh
ADCON0	1Fh	ANSEL	9Fh A0h
	20h	General	Aun
General		Purpose	
Purpose Registers		Registers 32 Bytes ⁽²⁾	
96 Bytes from			
20h-7Fh ⁽²⁾		Unimplemented for PIC12F615/HV615	
Unimplemented for		110121013/11013	BFh
PIC12F615/HV615			C0h
	3Fh		
General	40h		
Purpose Registers			
64 Bytes	6Fh		EFh
Accesses 70h-7Fh	70h 7Fh	Accesses 70h-7Fh	F0h FFh
Bank 0		Bank 1	- FF(1
—			
		y locations, read as '0'.	
	/sical regi		
2: Used for		2F617 only.	

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External GP2/INT interrupt
- Timer0
- Weak pull-ups on GPIO

REGISTER 2-2: OPTION_REG: OPTION REGISTER

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 6.1.3 "Software Programmable Prescaler".

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

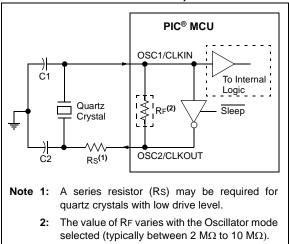
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on GP2/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	BIT VALUE HIVERO RATE WUT RATE

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1 : 128

4.3.3 LP, XT, HS MODES

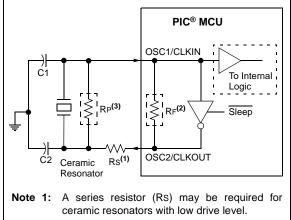
The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.


FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

- 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).
- **3:** An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

TABLE 5-1:SUMMARY OF REGISTERS ASSOCIATED WITH GPIO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	_	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	_	CMCH	0000 -0-0	0000 -0-0
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	u0 u000
TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
WPU	_	—	WPU5	WPU4	WPU3	WPU2	WPU1	WPU0	11 1111	11 -111
T1CON	T1GINV	TMR1GE	TICKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
CCP1CON ⁽¹⁾	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
APFCON ⁽¹⁾	_	—	_	T1GSEL	—	—	P1BSEL	P1ASEL	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by GPIO. Note 1: PIC12F615/617/HV615 only.

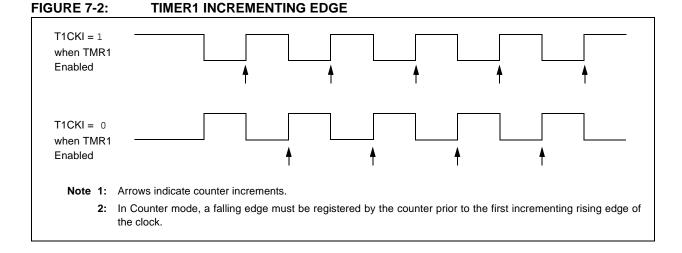
7.10 **ECCP Special Event Trigger** (PIC12F615/617/HV615 only)

If a ECCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The ECCP module may still be configured to generate a ECCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

Timer1 should be synchronized to the Fosc to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the ECCP, the write will take precedence.


For more information, see Section 11.0 "Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)".

7.11 **Comparator Synchronization**

The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module.

When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes.

For more information, see Section 9.0 "Comparator Module".

9.3 Comparator Control

The comparator has two control and Configuration registers: CMCON0 and CMCON1. The CMCON1 register is used for controlling the interaction with Timer1 and simultaneously reading the comparator output.

The CMCON0 register (Register 9-1) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- · Output selection
- Output polarity

9.3.1 COMPARATOR ENABLE

Setting the CMON bit of the CMCON0 register enables the comparator for operation. Clearing the CMON bit disables the comparator for minimum current consumption.

9.3.2 COMPARATOR INPUT SELECTION

The CMCH bit of the CMCON0 register directs one of four analog input pins to the comparator inverting input.

Note: To use CIN+ and CIN- pins as analog inputs, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

9.3.3 COMPARATOR REFERENCE SELECTION

Setting the CMR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 9.10 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

9.3.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the COUT bit of the CMCON0 register. In order to make the output available for an external connection, the following conditions must be true:

- CMOE bit of the CMxCON0 register must be set
- Corresponding TRIS bit must be cleared
- CMON bit of the CMCON0 register must be set.

Note 1:	The CMOE bit overrides the PORT data
	latch. Setting the CMON has no impact
	on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

9.3.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CMPOL bit of the CMCON0 register. Clearing CMPOL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 9-1.

Input Conditions	CMPOL	COUT					
CMVIN- > CMVIN+	0	0					
CMVIN- < CMVIN+	0	1					
CMVIN- > CMVIN+	1	1					
CMVIN- < CMVIN+	1	0					

TABLE 9-1: OUTPUT STATE VS. INPUT CONDITIONS

Note: COUT refers to both the register bit and output pin.

9.4 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See **Section 16.0 "Electrical Specifications"** for more details.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	all o	e on ther sets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00	0000	0-00	0000
CCPR1L	Capture/C	ompare/PW	M Register	1 Low Byte					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register	1 High Byte					xxxx	xxxx	uuuu	uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000	0000	0000	0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00-	0-00	-00-	0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00-	0-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx	xxxx	uuuu	uuuu		
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						xxxx	xxxx	uuuu	uuuu		
TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11	1111	11	1111

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

Note 1: For PIC12F615/617/HV615 only.

12.3.1 POWER-ON RESET (POR)

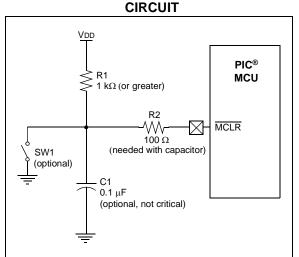
The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Section 16.0 "Electrical Specifications" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see Section 12.3.4 "Brown-out Reset (BOR)").

Note: The POR circuit does not produce an internal Reset when VDD declines. To reenable the POR, VDD must reach Vss for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

12.3.2 MCLR


PIC12F609/615/617/12HV609/615 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the GP3/MCLR pin becomes an external Reset input. In this mode, the GP3/MCLR pin has a weak pull-up to VDD.

FIGURE 12-2: RECOMMENDED MCLR

12.3.3 POWER-UP TIMER (PWRT)

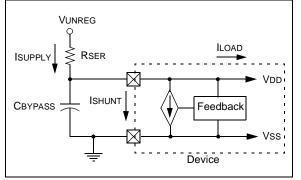
The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from an internal RC oscillator. For more information, see **Section 4.4** "**Internal Clock Modes**". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip due to:

- VDD variation
- Temperature variation
- Process variation

See DC parameters for details (Section 16.0 "Electrical Specifications").

Note:	Voltage spikes below Vss at the MCLR
	pin, inducing currents greater than 80 mA,
	may cause latch-up. Thus, a series resis-
	tor of 50-100 Ω should be used when
	applying a "low" level to the MCLR pin,
	rather than pulling this pin directly to Vss.


13.0 VOLTAGE REGULATOR

The PIC12HV609/HV615 devices include a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD).

13.1 Regulator Operation

A shunt regulator generates a specific supply voltage by creating a voltage drop across a pass resistor RSER. The voltage at the VDD pin of the microcontroller is monitored and compared to an internal voltage reference. The current through the resistor is then adjusted, based on the result of the comparison, to produce a voltage drop equal to the difference between the supply voltage VUNREG and the VDD of the microcontroller. See Figure 13-1 for voltage regulator schematic.

An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 13-1.

EQUATION 13-1: RSER LIMITING RESISTOR

$$RMAX = \frac{(VUMIN - 5V)}{1.05 \cdot (4 MA + ILOAD)}$$

$$RMIN = \frac{(VUMAX - 5V)}{0.95 \cdot (50 \text{ MA})}$$

Where:

RMAX = maximum value of RSER (ohms)

RMIN = minimum value of RSER (ohms)

VUMIN = minimum value of VUNREG

VUMAX = maximum value of VUNREG

VDD = regulated voltage (5V nominal)

- ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD.
- 1.05 = compensation for +5% tolerance of RSER
- 0.95 = compensation for -5% tolerance of RSER

13.2 Regulator Considerations

The supply voltage VUNREG and load current are not constant. Therefore, the current range of the regulator is limited. Selecting a value for RSER must take these three factors into consideration.

Since the regulator uses the band gap voltage as the regulated voltage reference, this voltage reference is permanently enabled in the PIC12HV609/HV615 devices.

The shunt regulator will still consume current when below operating voltage range for the shunt regulator.

13.3 Design Considerations

For more information on using the shunt regulator and managing current load, see Application Note AN1035, "*Designing with HV Microcontrollers*" (DS01035).

PIC12F609/615/617/12HV609/615

NOTES:

PIC12F609/615/617/12HV609/615

MOVF	Move f							
Syntax:	[<i>label</i>] MOVF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	$(f) \rightarrow (dest)$							
Status Affected:	Z							
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since Status flag Z is affected.							
Words:	1							
Cycles:	1							
Example:	MOVF FSR, 0							
	After Instruction W = value in FSR register Z = 1							

MOVWF	Move W to f							
Syntax:	[label] MOVWF f							
Operands:	$0 \leq f \leq 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Description:	Move data from W register to register 'f'.							
Words:	1							
Cycles:	1							
Example:	MOVW OPTION F							
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F							

MOVLW	Move literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.							
Words:	1							
Cycles:	1							
Example:	MOVLW 0x5A							
	After Instruction W = 0x5A							

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

15.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

15.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

15.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

16.2 DC Characteristics: PIC12F609/615/617-I (Industrial) PIC12F609/615/617-E (Extended)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param	Device Characteristics	Min	Тур†	Max	Units		Conditions
No.	Device Gharacteristics	WIIII	וקעי	Max	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)	_	13	25	μA	2.0	Fosc = 32 kHz
	PIC12F609/615/617		19	29	μA	3.0	LP Oscillator mode
			32	51	μA	5.0	
D011*			135	225	μA	2.0	Fosc = 1 MHz
			185	285	μA	3.0	XT Oscillator mode
			300	405	μA	5.0	
D012		—	240	360	μA	2.0	Fosc = 4 MHz
			360	505	μA	3.0	XT Oscillator mode
			0.66	1.0	mA	5.0	
D013*			75	110	μA	2.0	Fosc = 1 MHz
			155	255	μA	3.0	EC Oscillator mode
			345	530	μA	5.0	
D014			185	255	μA	2.0	Fosc = 4 MHz
			325	475	μA	3.0	EC Oscillator mode
			0.665	1.0	mA	5.0	
D016*			245	340	μA	2.0	Fosc = 4 MHz
			360	485	μA	3.0	INTOSC mode
			0.620	0.845	mA	5.0	
D017			395	550	μA	2.0	Fosc = 8 MHz
			0.620	0.850	mA	3.0	INTOSC mode
			1.2	1.6	mA	5.0	
D018			175	235	μA	2.0	Fosc = 4 MHz
			285	390	μA	3.0	EXTRC mode ⁽³⁾
		—	530	750	μA	5.0	
D019		_	2.2	3.1	mA	4.5	Fosc = 20 MHz HS Oscillator mode
			2.8	3.35	mA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

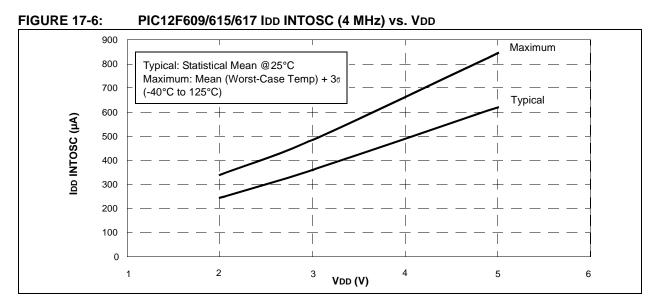
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-torail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

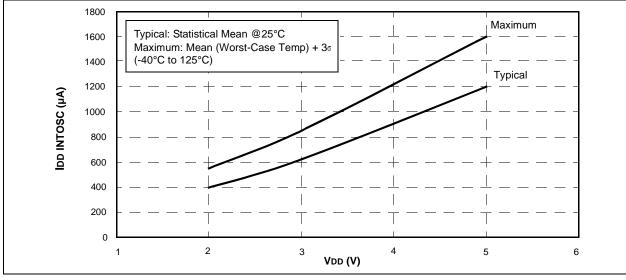
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in KOhms (KΩ).

16.6 DC Characteristics: PIC12HV609/615 - I (Industrial)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param Device Characteristics		Min	Truck	Max	Units	Conditions		
No.	Device Characteristics	IVIIII	Тур†	IVIAX	Units	Vdd	Note	
D020	Power-down Base Current (IPD) ^(2,3)	—	135	200	μΑ	2.0	WDT, BOR, Comparator, VREF and T1OSC disabled	
		_	210	280	μΑ	3.0	7	
	PIC12HV609/615	_	260	350	μΑ	4.5		
D021		—	135	200	μΑ	2.0	WDT Current ⁽¹⁾	
		_	210	285	μΑ	3.0		
		_	265	360	μΑ	4.5	1	
D022		—	215	285	μΑ	3.0	BOR Current ⁽¹⁾	
		_	265	360	μΑ	4.5	1	
D023		—	185	270	μΑ	2.0	Comparator Current ⁽¹⁾ , single	
		—	265	350	μΑ	3.0	comparator enabled	
		—	320	430	μΑ	4.5		
D024		—	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)	
		—	255	330	μΑ	3.0		
		_	330	430	μΑ	4.5		
D025*		—	175	245	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)	
		—	275	350	μΑ	3.0		
		—	355	450	μΑ	4.5		
D026		_	140	205	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz	
		_	220	290	μΑ	3.0]	
		—	270	360	μA	4.5		
D027		_	210	280	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in	
		—	260	350	μΑ	4.5	progress	

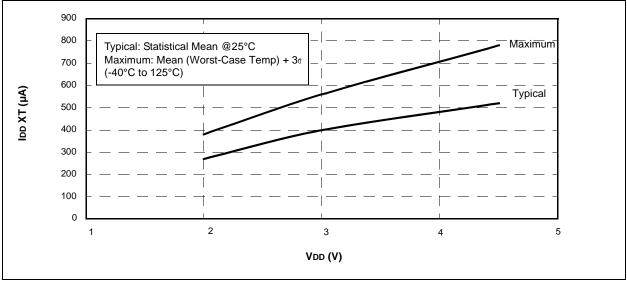

* These parameters are characterized but not tested.

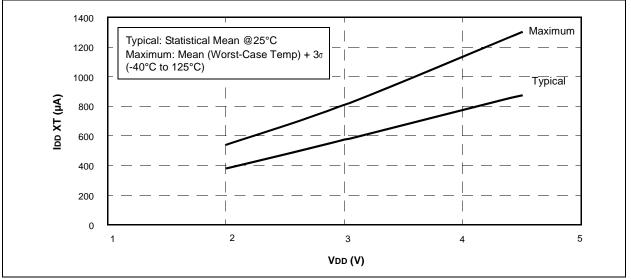
† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

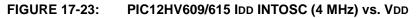

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

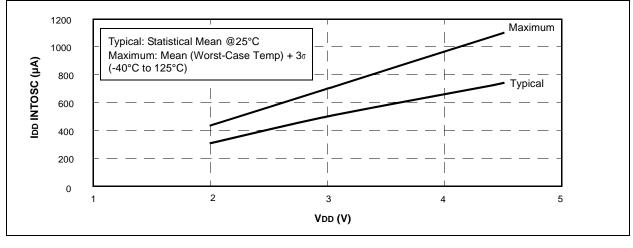
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

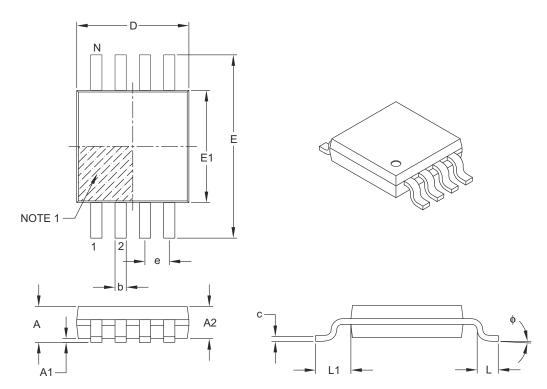
3: Shunt regulator is always on and always draws operating current.






PIC12F609/615/617/12HV609/615





8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е	0.65 BSC			
Overall Height	A	-	-	1.10	
Molded Package Thickness	A2	0.75	0.85	0.95	
Standoff	A1	0.00	-	0.15	
Overall Width	E	4.90 BSC			
Molded Package Width	E1	3.00 BSC			
Overall Length	D	3.00 BSC			
Foot Length	L	0.40	0.60	0.80	
Footprint	L1	0.95 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.08	-	0.23	
Lead Width	b	0.22	-	0.40	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111B