

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f609t-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External GP2/INT interrupt
- Timer0
- Weak pull-ups on GPIO

REGISTER 2-2: OPTION_REG: OPTION REGISTER

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 6.1.3 "Software Programmable Prescaler".

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on GP2/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	BIT VALUE HIVERO RATE WUT RATE

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1 : 128

PIC12F609/615/617/12HV609/615

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | TOIF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt
bit 3	GPIE: GPIO Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt
bit 2	TolF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.2.2.6 PCON Register

The Power Control (PCON) register (see Table 12-2) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the software enable of the $\overline{\text{BOR}}.$

The PCON register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 ⁽¹⁾
—	—	—	—	—	—	POR	BOR
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'		
-n = Value at POR		'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared			
bit 7-2	Unimple	mented: Read as '0'				
bit 1	POR: Po	ower-on Reset Status bit				
	1 = No Power-on Reset occurred					
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)					
bit 0	BOR: BI	own-out Reset Status bit				

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Note 1: Reads as '0' if Brown-out Reset is disabled.

5.2.4 PIN DESCRIPTIONS AND DIAGRAMS

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet.

5.2.4.1 GP0/AN0⁽¹⁾/CIN+/P1B⁽¹⁾/ICSPDAT

Figure 5-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog non-inverting input to the comparator
- a PWM output⁽¹⁾
- In-Circuit Serial Programming data

5.2.4.2 GP1/AN1⁽¹⁾/CIN0-/VREF⁽¹⁾/ICSPCLK

Figure 5-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog inverting input to the comparator
- a voltage reference input for the ADC⁽¹⁾
- In-Circuit Serial Programming clock

Note 1: PIC12F615/617/HV615 only.

FIGURE 5-1: BLOCK DIAGRAM OF GP<1:0>

TABLE 5-1:SUMMARY OF REGISTERS ASSOCIATED WITH GPIO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	—	CMCH	0000 -0-0	0000 -0-0
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC	—	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
GPIO	—	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	u0 u000
TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
WPU	_	_	WPU5	WPU4	WPU3	WPU2	WPU1	WPU0	11 1111	11 -111
T1CON	T1GINV	TMR1GE	TICKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000 0000	uuuu uuuu
CCP1CON ⁽¹⁾	P1M	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
APFCON ⁽¹⁾	_	_	_	T1GSEL	_	—	P1BSEL	P1ASEL	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by GPIO. Note 1: PIC12F615/617/HV615 only.

7.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Optional LP oscillator
- Synchronous or asynchronous operation
- Timer1 gate (count enable) via comparator or $\overline{\text{T1G}}$ pin
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with ECCP)
- Comparator output synchronization to Timer1 clock

Figure 7-1 is a block diagram of the Timer1 module.

7.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter.

7.2 Clock Source Selection

The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally.

Clock Source	TMR1CS	T1ACS
Fosc/4	0	0
Fosc	0	1
T1CKI pin	1	x

9.11 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

TABLE 9-2:SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND
VOLTAGE REFERENCE MODULES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
CMCON0	CMON	COUT	CMOE	CMPOL		CMR	—	CMCH	0000 -000	0000 -000
CMCON1	_		_	T1ACS	CMHYS		T1GSS	CMSYNC	0000 0000	0000 0000
INTCON	GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000x
PIE1	-	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00-0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00-0-00	-00- 0-00
GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
VRCON	CMVREN	_	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	0-00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

Note 1: For PIC12F615/617/HV615 only.

11.4.2 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each PWM output pin (P1A and P1B). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The P1A and P1B output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

11.4.3 OPERATION DURING SLEEP

When the device is placed in sleep, the allocated timer will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state.

bit 7							bit 0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
R/W-0							

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 PRS

PRSEN: PWM Restart Enable bit

1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically

0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC<6:0>: PWM Delay Count bits

PDCn =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

TABLE 11-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
APFCON	—	_	_	T1GSEL	—	—	P1BSEL	P1ASEL	000	000
CCP1CON ⁽¹⁾	P1M	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
CCPR1L ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 L	ow Byte					xxxx xxxx	uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 H	ligh Byte					xxxx xxxx	uuuu uuuu
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	_	CMCH	0000 -0-0	0000 -0-0
CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	0 0-10
ECCPAS ⁽¹⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
T2CON ⁽¹⁾		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2 ⁽¹⁾	Timer2 Module Register								0000 0000	0000 0000
TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

Note 1: For PIC12F615/617/HV615 only.

14.0 INSTRUCTION SET SUMMARY

The PIC12F609/615/617/12HV609/615 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 14-1, while the various opcode fields are summarized in Table 14-1.

Table 14-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

14.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF GPIO instruction will read GPIO, clear all the data bits, then write the result back to GPIO. This example would have the unintended consequence of clearing the condition that set the GPIF flag.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

16.5 DC Characteristics: PIC12F609/615/617 - E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Param Device Observatoriation		Trunt	Max	Unite		Conditions		
No.	Device Characteristics	win	турт	wax	Units	Vdd	Note		
D020E	Power-down Base	_	0.05	4.0	μA	2.0	WDT, BOR, Comparator, VREF and		
		—	0.15	5.0	μA	3.0	T1OSC disabled		
	PIC12F609/615/617	_	0.35	8.5	μA	5.0			
D021E		—	0.5	5.0	μA	2.0	WDT Current ⁽¹⁾		
		—	2.5	8.0	μA	3.0			
		_	9.5	19	μΑ	5.0			
D022E		—	5.0	15	μA	3.0	BOR Current ⁽¹⁾		
		_	6.0	19	μA	5.0			
D023E		—	50	70	μA	2.0	Comparator Current ⁽¹⁾ , single		
		—	55	75	μA	3.0	comparator enabled		
		—	60	80	μA	5.0			
D024E		—	30	40	μA	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	45	60	μA	3.0			
		_	75	105	μA	5.0			
D025E*		—	39	50	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
		_	59	80	μΑ	3.0			
		_	98	130	μΑ	5.0			
D026E		_	5.5	16	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
			7.0	18	μA	3.0			
		—	8.5	22	μA	5.0]		
D027E		_	0.2	6.5	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
		—	0.36	10	μA	5.0	progress		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

*

16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS			Standard Operat Operating temper	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	VIL	Input Low Voltage						
		I/O port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D031		with Schmitt Trigger buffer	Vss		0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode)	Vss		0.2 Vdd	V	(NOTE 1)	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V		
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V		
	Viн	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	2.0		Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8	_	Vdd	V	$2.0V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \le VDD \le 5.5V$	
D042		MCLR	0.8 Vdd	_	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(NOTE 1)	
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	—	± 0.1	± 1	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		GP3/MCLR ^(3,4)	—	±0.7	± 5	μΑ	$VSS \leq VPIN \leq VDD$	
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	Ipur	GPIO Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage	—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage	Vdd - 0.7	_	_	V	IOH = -2.5mA, VDD = 4.5V, -40°C to +125°C	
D090		I/O ports ⁽²⁾	Vdd - 0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.

5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

6: Applies to PIC12F617 only.

TABLE 16-12: PIC12F615/617/HV615 A/D CONVERSION REQUIREMENTS

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions				
AD130*	TAD	A/D Clock Period	1.6	_	9.0	μS	Tosc-based, VREF $\geq 3.0V$				
			3.0	—	9.0	μS	Tosc-based, VREF full range ⁽³⁾				
		A/D Internal RC					ADCS<1:0> = 11 (ADRC mode)				
		Oscillator Period	3.0	6.0	9.0	μS	At VDD = 2.5V				
			1.6	4.0	6.0	μS	At VDD = 5.0V				
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	Tad	Set GO/DONE bit to new data in A/D Result register				
AD132*	TACQ	Acquisition Time		11.5	_	μS					
AD133*	Тамр	Amplifier Settling Time			5	μS					
AD134	Tgo	Q4 to A/D Clock Start	_	Tosc/2	—	—					
			_	Tosc/2 + Tcy	_		If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

- 2: See Section 10.3 "A/D Acquisition Requirements" for minimum conditions.
- 3: Full range for PIC12HV609/HV615 powered by the shunt regulator is the 5V regulated voltage.

FIGURE 16-10: PIC12F615/617/HV615 A/D CONVERSION TIMING (NORMAL MODE)

16.12 High Temperature Operation

This section outlines the specifications for the <u>PIC12F615</u> device operating in a temperature range <u>between -40°C and 150°C</u>.⁽⁴⁾ The specifications between -40°C and 150°C⁽⁴⁾ are identical to those shown in DS41288 and DS80329.

Note 1	: Writes are <u>not allowed</u> for Flash Program Memory above 125°C.									
2	: All AC timing specifications are increased by 30%. This derating factor will include parameters such as TPWRT.									
3	 The temperature range indicator in the part number is "H" for -40°C to 150°C.⁽⁴⁾ 									
	Example: PIC12F615T-H/ST indicates the device is shipped in a TAPE and reel configuration, in the MSOP package, and is rated for operation from -40°C to 150°C. ⁽⁴⁾									
4	: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total oper- ating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from									

Microchip Technology Inc.

Parameter	Source/Sink	Value	Units
Max. Current: VDD	Source	20	mA
Max. Current: Vss	Sink	50	mA
Max. Current: PIN	Source	5	mA
Max. Current: PIN	Sink	10	mA
Pin Current: at VOH	Source	3	mA
Pin Current: at VOL	Sink	8.5	mA
Port Current: GPIO	Source	20	mA
Port Current: GPIO	Sink	50	mA
Maximum Junction Temperature		155	°C

TABLE 16-13: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC12F609/615/617/12HV609/615

PIC12F609/615/617/12HV609/615

FIGURE 17-12: PIC12F609/615/617 IPD WDT vs. VDD

© 2010 Microchip Technology Inc.

18.0 PACKAGING INFORMATION

18.1 Package Marking Information

Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	×	<u>/xx</u>	xxx		Exa	mple	s:
Device	Temperature Range	Package	Pattern		a) b)	PIC1 pack PIC1 pack	2F615-E/P 301 = Extended Temp., PDIP age, 20 MHz, QTP pattern #301 2F615-I/SN = Industrial Temp., SOIC age, 20 MHz
Device:	PIC12F609, PIC ⁷ PIC12F615, PIC ⁷ PIC12F617, PIC ⁷	12F609T ⁽¹⁾ , F 12F615T ⁽¹⁾ , F 12F617T ⁽¹⁾	PIC12HV609, PIC12H PIC12HV615, PIC12H	V609T ⁽¹⁾ , V615T ⁽¹⁾ ,	c) d) e)	PIC1 Temp PIC1 Temp PIC1 Extor	2F615T-E/MF = Tape and Reel, Extended ., 3x3 DFN, 20 MHz 2F609T-E/MF = Tape and Reel, Extended ., 3x3 DFN, 20 MHz 2HV615T-E/MF = Tape and Reel, add Tomp, 3x3 DFN, 20 MHz
Temperature Range:	$ \begin{array}{rcl} H & = & -40^{\circ}C \\ I & = & -40^{\circ}C \\ E & = & -40^{\circ}C \end{array} $	to +150°C to +85°C to +125°C	(High Temp) ⁽³⁾ (Industrial) (Extended)		f) g)	PIC1 Exter PIC1 Temp	2HV609T:E/MF = Tape and Reel, nded Temp., 3x3 DFN, 20 MHz 2F617T:E/MF = Tape and Reel, Extended 0., 3x3 DFN, 20 MHz 2F647 UP = Individual Temp. BDID pack
Package:	P = Pla SN = 8-li MS = Mia MF = 8-li MD = 8-li (4x	astic DIP (PD ead Small Ou cro Small Ou ead Plastic D ead Plastic D (4)(DFN) ^(1,2)	IP) utline (150 mil) (SOIC) tline (MSOP) vual Flat, No Lead (3x3 vual Flat, No Lead	3) (DFN)	i) Note	PIC1 age, PIC1 age, age,	20 MHz 20 MHz 26 75-H/SN = High Temp., SOIC pack- 20 MHz T = in tape and reel for MSOP, SOIC and DFN packages only.
Pattern:	QTP, SQTP or R((blank otherwise)	OM Code; Sp)	pecial Requirements			2: 3:	Not available for PIC12F617. High Temp. available for PIC12F615 only.