

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	· ·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	· ·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f609t-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 2-1:

the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

STATUS: STATUS REGISTER

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 14.0 "Instruction Set Summary".

- Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F609/615/617/ 12HV609/615 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: This bit is reserved and should be maintained as '0'
bit 6	RP1: This bit is reserved and should be maintained as '0'
bit 5	RP0: Register Bank Select bit (used for direct addressing)
	1 = Bank 1 (80h – FFh)
	0 = Bank 0 (00h - 7Fh)
bit 4	TO: Time-out bit
	 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions), For Borrow, the polarity is reversed.
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions)
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1. F	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the

Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the Note 1: second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

NOTES:

6.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

6.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 6-1, must be executed.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

	BANKSEL	TMR0	i
	CLRWDT		;Clear WDT
	CLRF	TMR0	;Clear TMR0 and
			;prescaler
	BANKSEL	OPTION_REG	;
	BSF	OPTION_REG,PSA	;Select WDT
	CLRWDT		;
			;
	MOVLW	b'11111000'	;Mask prescaler
	ANDWF	OPTION_REG,W	;bits
	IORLW	b'00000101'	;Set WDT prescaler
	MOVWF	OPTION_REG	;to 1:32
I			

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 6-2).

EXAMPLE 6-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BANKSEL	OPTION_REG	;
MOVLW	b'11110000'	;Mask TMR0 select and
ANDWF	OPTION_REG,W	;prescaler bits
IORLW	b'0000011'	;Set prescale to 1:16
MOVWF	OPTION_REG	;

6.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is frozen during Sleep.

6.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in **Section 16.0 "Electrical Specifications"**.

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

7.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 7-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 7-1: T1CON: TIMER 1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T1GINV ^{(*}	¹⁾ TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown		
bit 7	T1GINV: Time 1 = Timer1 ga 0 = Timer1 ga	er1 Gate Invert te is active-hig te is active-low	bit ⁽¹⁾ h (Timer1 cou / (Timer1 cour	nts when gate is	s high) low)				
bit 6	TMR1GE: Timer1 Gate is active-low (Timer1 counts when gate is low) $\frac{\text{If TMR1ON} = 0:}{\text{This bit is ignored}}$ $\frac{\text{If TMR1ON} = 1:}{1 = \text{Timer1 is on if Timer1 gate is active}}$								
bit 5-4	T1CKPS<1:0: 11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	Timer1 Inpucale Value cale Value cale Value cale Value cale Value	t Clock Presca	ale Select bits					
bit 3	T1OSCEN: LF If INTOSC with 1 = LP oscillat 0 = LP oscillat For all other si This bit is igno	P Oscillator En hout CLKOUT or is enabled f or is off ystem clock m ored. LP oscilla	able Control b oscillator is ac or Timer1 cloo odes: ttor is disabled	it <u>ctive:</u> ck I.					
bit 2	T1SYNC: Tim TMR1CS = 1: 1 = Do not syr 0 = Synchroni TMR1CS = 0: This bit is ignored	er1 External C nchronize exte ze external clo pred. Timer1 us	lock Input Syr rnal clock inpu ck input ses the interna	nchronization Co It Il clock	ontrol bit				
bit 1	TMR1CS: Tim 1 = External c 0 = Internal cl	er1 Clock Sou lock from T1C ock (FOSC/4) o	rce Select bit KI pin (on the r system clocl	rising edge) < (Fosc) ⁽³⁾					
bit 0	TMR1ON: Tim 1 = Enables T 0 = Stops Tim	ner1 On bit imer1 er1	-	. ,					
Note 1: 2:	T1GINV bit inverts TMR1GE bit must register, as a Time	the Timer1 ga be set to use e r1 gate source	te logic, regar either T1G pin	dless of source. or COUT, as se	lected by the	T1GSS bit of th	e CMCON1		

3: See T1ACS bit in CMCON1 register.

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
APFCON ⁽¹⁾	—	—	—	T1GSEL		-	P1BSEL	P1ASEL	000	000
CMCON0	CMON	COUT	CMOE	CMPOL		CMR	_	CMCH	0000 -0-0	0000 -0-0
CMCON1	_	—	—	T1ACS	CMHYS		T1GSS	CMSYNC	0 0-10	0 0-10
INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000x
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE		TMR2IE ⁽¹⁾	TMR1IE	-00-0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF		TMR2IF ⁽¹⁾	TMR1IF	-00-0-00	-00- 0-00
TMR1H	1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC12F615/617/HV615 only.

9.0 COMPARATOR MODULE

The comparator can be used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparator is a very useful mixed signal building block because it provides analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Programmable input section
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- PWM shutdown
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference
- User-enable Comparator Hysteresis

9.1 Comparator Overview

The comparator is shown in Figure 9-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less

than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 9-1:SINGLE COMPARATOR

els and the

FIGURE 9-2: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

9.5 Comparator Interrupt Operation

The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figure 9-4 and Figure 9-5). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMCON0 register is read or the comparator output returns to the previous state.

- **Note 1:** A write operation to the CMCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle.
 - 2: Comparator interrupts will operate correctly regardless of the state of CMOE.

The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator's return to the previous state, otherwise no interrupt will be generated.

Software will need to maintain information about the status of the comparator output, as read from the CMCON1 register, to determine the actual change that has occurred.

The CMIF bit of the PIR1 register is the Comparator Interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, an interrupt can be generated.

The CMIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CMIF bit of the PIR1 register will still be set if an interrupt condition occurs.

COMPARATOR INTERRUPT TIMING WITH CMCON0 READ

- Note 1: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF of the PIR1 register interrupt flag may not get set.
 - 2: When a comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
CMON	COUT	CMOE	CMPOL	—	CMR	—	CMCH
bit 7							bit 0
Logond:							
R = Readah	ole bit	W = Writable	hit	U = Unimple	mented hit re	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	CMON: Com	parator Enable	bit				
	1 = Compara 0 = Compara	tor is enabled tor is disabled					
bit 6	COUT: Comp	arator Output	bit				
	<u>If C1POL = 1</u> COUT = 0 wh COUT = 1 wh <u>If C1POL = 0</u> COUT = 1 wh COUT = 0 wh	<u>(inverted pola</u> nen CMVIN+ > nen CMVIN+ < <u>(non-inverted</u> nen CMVIN+ > nen CMVIN+ <	r <u>ity):</u> CMVIN- CMVIN- polarity): CMVIN- CMVIN-				
bit 5	CMOE: Comp 1 = COUT is 0 = COUT is	parator Output present on the internal only	Enable bit COUT pin ⁽¹⁾				
bit 4	CMPOL: Con 1 = COUT log 0 = COUT log	nparator Outpu gic is inverted gic is not invert	it Polarity Sele ed	ct bit			
bit 3	Unimplemen	ted: Read as	0'				
bit 2	CMR: Compa	arator Reference	e Select bit (no	on-inverting in	put)		
	1 = CMVIN+c $0 = CMVIN+c$	connects to CM connects to CI	1VREF output N+ pin				
bit 1	Unimplemen	ted: Read as	0'				
bit 0	CMCH: Com	parator C1 Cha	annel Select bit	t			
	0 = CMVIN- p 1 = CMVIN- p	in of the Comp in of the Comp	arator connect arator connect	s to CIN0- s to CIN1-			
Note 1: (Comparator outpu	t requires the f	ollowing three	conditions: CN	/IOE = 1, CMO	N = 1 and corre	sponding port

REGISTER 9-1: CMCON0: COMPARATOR CONTROL REGISTER 0

Note 1: Comparator output requires the following three conditions: CMOE = 1, CMON = 1 and corresponding port TRIS bit = 0.

10.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 10-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 10-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 10-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 10-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$

$$= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-T_{C}}{R_{C}}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED}$$

$$V_{APPLIED}\left(1-e^{\frac{-1}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{2047}\right) \quad (combining [1] and [2])$$

Solving for TC:

$$Tc = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$
$$= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$
$$= 1.37us$$

Therefore:

$$TACQ = 2\mu s + 1.37\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.67\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
CCPR1L	Capture/Compare/PWM Register 1 Low Byte									uuuu uuuu
CCPR1H	Capture/Compare/PWM Register 1 High Byte								XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	—	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TMR1H	Holding Re	egister for th		XXXX XXXX	uuuu uuuu					
TRISIO	_	—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

Note 1: For PIC12F615/617/HV615 only.

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

Note:	Clearing	the	CCP1CON	register	will
	relinquish	CCP	1 control of th	ne CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR PIC12F609/615/HV609/615 ONLY

U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	—	_	_	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	IOSCFS	CP(2)	MCLRE ⁽³⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
h it 40													h:+ 0
DIT 13	•												DIT U
]
Lege	na:												
R = F	Readal	ble bit		W = Writable	e bit	P = Progi	ammab	le		U = Uni	mplement	ed bit, rea	ad as '0'
-n = \	/alue a	at POR		'1' = Bit is se	et	'0' = Bit is	cleared	ł		x = Bit i	s unknow	n	
bit 13	-10	Ur	nimplem	nented: Read	as '1'								
bit 9-	8	ВС	OREN<1	:0>: Brown-o	ut Reset Sele	ction bits ⁽¹)						
		11	= BOR	enabled									
		10	= BOR	enabled durin	ig operation a	and disable	d in Sle	ер					
hit 7		10	SCES-1	nternal Oscille	ator Frequenc	w Select h	it						
bit 7		1:	= 8 MHz			by Ocicot b							
		0 =	= 4 MHz										
bit 6		CF	Code	Protection bit	(2)								
		1 =	= Progra	m memory co	de protection	is disable	d						
		0 =	= Progra	m memory co	de protectior	is enable	ł						
bit 5		MC		ICLR Pin Fun	ction Select b	bit ⁽³⁾							
		1 = 0 =		pin function is	digital input	MCLR inte	rnally ti	ed to Voo					
bit 4		PW	RTE: P	ower-up Time	er Enable bit								
		1 =	PWRT	disabled									
		0 =	PWRT	enabled									
bit 3		WE	DTE: Wa	atchdog Timer	Enable bit								
		1 =	: WDT e WDT d	nabled isabled									
hit 2-	0	FO:	SC-2.0	• Oscillator S	election hits								
511 2	0	111	=RC os	scillator: CLK	OUT function	on GP4/O	SC2/CL	KOUT pin, F	RC on GP5	5/OSC1/C	LKIN		
		110	=RCIO	oscillator: I/C	function on	GP4/OSC2	2/CLKO	JT pin, RC c	on GP5/OS	C1/CLK	IN		
		101	. =INTOS	SC oscillator: (tion on GP	4/OSC2	/CLKOUT pi	n, I/O funct	tion on			
		100) = INTC	SCIO oscillat	or: I/O functio	on on GP4/	OSC2/0	CLKOUT pin	, I/O functi	on on			
			GP	5/OSC1/CLK	IN								
		011	=EC: I/	O function on	GP4/OSC2/	CLKOUT p	in, CLK	IN on GP5/C	SC1/CLK				
		010	0 CH= ر ص XT =	scillator: High-	speed crysta	on GP4/O	SC2/CU	+/USUZ/ULK KOUT and G	SP5/OSC1	GP5/050 /CI KIN	UI/ULKIN		
		000	= LP o	scillator: Low-	power crysta	on GP4/C	SC2/CL	KOUT and	GP5/OSC	1/CLKIN			
Note	1.	Enabli	na Brow	n-out Reset d	oes not autor	natically e	nable Pr	ower-un Tim	er.				
1010	2:	The er	ntire prod	gram memorv	will be erase	d when the	e code n	rotection is f	turned off.				

3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

								•		,			
<u> </u>				+	1	+		1	i		1	ı — — —	
U-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		WRT1	WRT0	BOREN1	BOREN0	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	F0SC1	F0SC0
13													DIT U
bit 13	it 13-12 Unimplemented: Read as '1'												
bit 11	-10	WRT<1:0>: Flash Program Memory Self Write Enable bits											
		11 = Writ 10 = 000	e protect	tion off h write prot	ected 200h	to 7FFh m	nav he mo	dified by F		ontrol			
		01 = 000	h to 3FF	h write prot	ected, 200h	to 7FFh m	nay be mo	odified by F	MCON1 c	ontrol			
		00 = 000	h to 7FF	h write prot	ected, entire	e program	memory i	s write prot	ected.				
bit 9-8	3	BOREN	:1:0>: Br	rown-out Re	eset Enable	bits							
		10 = BOI	R disable	ed during SI	eep and en	abled durir	ng operati	on					
		0X = BO	२ disable	∋d	·		0						
bit 7		IOSCFS:	Internal	Oscillator F	Frequency S	Select							
		1 = 8 M 0 = 4 M	HZ HZ										
bit 6		CP: Cod	e Protect	tion									
		1 = Property	gram me	mory is not	code prote	cted							
L		0 = Prop	gram me	mory is extended	ernal read a	and write pi	rotected						
DIT 5		1 = MC	LR pin is	MCLR function	tion and w	eak interna	i au-Ilua I	s enabled					
		$0 = \overline{MC}$	LR pin is	alternate fu	unction, MC	LR function	n is intern	ally disable	ed				
bit 4		PWRTE:	Power-u	up Timer En	able bit ⁽¹⁾								
		1 = PW 0 = PW	RT disab RT enab	led									
bit 3		WDTE: V	Vatchdoo	g Timer Ena	able bit								
		1 = WD	T enable)d									
	_	0 = WD	T disable	ed									
bit 2-0)	FOSC<2	:0>: Osc oscillato	illator Selector: Low-pow	ction bits er crystal o	n RA5/T1C	KI/OSC1	/CI KIN and	RA4/AN3	3/ <u>T1G</u> /OS	C2/CI KO	UT	
		001 =XT	oscillato	or: Crystal/re	esonator on	RA5/T1C	<i <="" osc1="" td=""><td>CLKIN and</td><td>RA4/AN3/</td><td>T1G/OS0</td><td>C2/CLKO</td><td>JT</td><td></td></i>	CLKIN and	RA4/AN3/	T1G/OS0	C2/CLKO	JT	
	010 =HS oscillator: High-speed crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT												
	100 =INTOSCIO oscillator: I/O function on RA4/AN3/TTG/OSC2/CLKIN on RA5/TTCKI/OSC1/CLKIN												
	101 =INTOSC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/												
	CLKIN 110 - EXTRCIO oscillator: I/O function on RA4/AN3/716/OSC2/OLKOUT, RC on RA5/710/KI/OSC4/OLKIN												
	111 =EXTRC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN												
Note	Note 1: Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT).												
Leger	Legend:												
R = R	eadab	le bit		W	= Writable	bit	U =	Unimplem	ented bit, r	ead as '1	l' P:	= Prograr	nmable

0 = bit is cleared

1 = bit is set

REGISTER 12-2: CONFIG - CONFIGURATION WORD (ADDRESS: 2007h) FOR PIC12F617 ONLY

-n = Value at POR

x = bit is unknown

12.4.2 TIMER0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing T0IE bit of the INTCON register. See **Section 6.0 "Timer0 Module"** for operation of the Timer0 module.

12.4.3 GPIO INTERRUPT-ON-CHANGE

An input change on GPIO sets the GPIF bit of the INTCON register. The interrupt can be enabled/ disabled by setting/clearing the GPIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register.

Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set.

15.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

15.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

15.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

16.9 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$									
Param No.	Sym	Characteristic	Тур	Units	Conditions				
TH01	θJA	Thermal Resistance	84.6*	C/W	8-pin PDIP package				
		Junction to Ambient	149.5*	C/W	8-pin SOIC package				
			211*	C/W	8-pin MSOP package				
			60*	C/W	8-pin DFN 3x3mm package				
			44*	C/W	8-pin DFN 4x4mm package				
TH02	θJC	Thermal Resistance	41.2*	C/W	8-pin PDIP package				
		Junction to Case	39.9*	C/W	8-pin SOIC package				
			39*	C/W	8-pin MSOP package				
			9*	C/W	8-pin DFN 3x3mm package				
			3.0*	C/W	8-pin DFN 4x4mm package				
TH03	TDIE	Die Temperature	150*	С					
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O				
TH05	PINTERNAL	Internal Power Dissipation	_	W	Pinternal = Idd x Vdd (NOTE 1)				
TH06	Pi/o	I/O Power Dissipation		W	$ PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH)) $				
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tdie - Ta)/θja (NOTE 2)				

* These parameters are characterized but not tested.

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: T_A = Ambient temperature.

FIGURE 17-41: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE

18.0 PACKAGING INFORMATION

18.1 Package Marking Information

Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.