

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f609t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC12F609/615/617/12HV609/615 devices are covered by this data sheet. They are available in 8-pin PDIP, SOIC, MSOP and DFN packages.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F609/HV609 (Figure 1-1, Table 1-1)
- PIC12F615/617/HV615 (Figure 1-2, Table 1-2)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	this location	uses content	s of FSR to a	address data	memory (no	t a physical r	egister)	xxxx xxxx	25, 115
01h	TMR0	Timer0 Mod	ule's Registe	r						xxxx xxxx	53, 115
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	25, 115
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 115
04h	FSR	Indirect Data	a Memory Ac	Idress Pointe	er					XXXX XXXX	25, 115
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	43, 115
06h	—	Unimplemen	nted							—	—
07h	—	Unimplemen	nted							—	—
08h	—	Unimplemen	nted							—	—
09h	—	Unimplemen	nted							—	—
0Ah	PCLATH	_	_	_	Write	e Buffer for up	oper 5 bits of	Program Co	unter	0 0000	25, 115
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	20, 115
0Ch	PIR1	—	—	—	_	CMIF	_	_	TMR1IF	00	22, 115
0Dh	_	Unimplemen	Jnimplemented								_
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	57, 115
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit TMF	R1 Register			xxxx xxxx	57, 115
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	62, 115
11h	_	Unimplemen	nted							_	—
12h	_	Unimplemen	nted							_	—
13h	_	Unimplemen	nted							_	—
14h	_	Unimplemen	nted							_	—
15h	_	Unimplemen	nted							_	—
16h	_	Unimplemen	nted							_	—
17h	_	Unimplemen	nted							_	—
18h	_	Unimplemen	nted							_	_
19h	VRCON	CMVREN	—	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	76, 116
1Ah	CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	_	CMCH	0000 -0-0	72, 116
1Bh	_					_		_		_	_
1Ch	CMCON1	_	—	—	T1ACS	CMHYS	—	T1GSS	CMSYNC	0 0-10	73, 116
1Dh	—	Unimplemen	nted							—	—
1Eh	—	Unimplemen	nted							_	—
1Fh	_	Unimplemer	nted							_	_
Legend	equiverse in the second secon										

TABLE 2-1: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

IRP and RP1 bits are reserved, always maintain these bits clear. 1:

2: Read only register.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								25, 116
01h	TMR0	Timer0 Mod	ule's Registe	r						xxxx xxxx	53, 116
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	25, 116
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
04h	FSR	Indirect Data	a Memory Ad	dress Pointe	r					xxxx xxxx	25, 116
05h	GPIO		—	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	43, 116
06h	—	Unimplemen	nted							—	
07h	—	Unimplemer	nted							—	_
08h	—	Unimplemen	nted							—	-
09h	—	Unimplemen	nted							—	-
0Ah	PCLATH		—		Write	Buffer for u	oper 5 bits of	Program Co	unter	0 0000	25, 116
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	20, 116
0Ch	PIR1	—	ADIF	CCP1IF	—	CMIF	-	TMR2IF	TMR1IF	-00-0-00	22, 116
0Dh	—	Unimplemen	Jnimplemented							—	-
0Eh	TMR1L	Holding Reg	gister for the I	_east Signific	ant Byte of th	ne 16-bit TM	R1 Register			xxxx xxxx	57, 116
0Fh	TMR1H	Holding Reg	gister for the I	Most Signific	ant Byte of th	e 16-bit TMF	R1 Register			xxxx xxxx	57, 116
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	62, 116
11h	TMR2 ⁽³⁾	Timer2 Mod	ule Register							0000 0000	65, 116
12h	T2CON ⁽³⁾	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	66, 116
13h	CCPR1L ⁽³⁾	Capture/Cor	mpare/PWM	Register 1 Lo	ow Byte					XXXX XXXX	90, 116
14h	CCPR1H ⁽³⁾	Capture/Cor	mpare/PWM	Register 1 H	igh Byte					XXXX XXXX	90, 116
15h	CCP1CON ⁽³⁾	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	89, 116
16h	PWM1CON ⁽³⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	105, 116
17h	ECCPAS ⁽³⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	102, 116
18h	—	Unimplemen	Unimplemented							—	
19h	VRCON	CMVREN	—	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	76, 116
1Ah	CMCON0	CMON	COUT	CMOE	CMPOL		CMR	—	CMCH	0000 -0-0	72, 116
1Bh	_					_		_		_	_
1Ch	CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	73, 116
1Dh	_	Unimplemen	nted							_	_
1Eh	ADRESH ^(2, 3)	Most Signifie	cant 8 bits of	the left shifte	d A/D result	or 2 bits of ri	ght shifted re	sult		xxxx xxxx	85, 116
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	84, 116

TABLE 2-2:	PIC12F615/617/HV615 SPECIAL	FUNCTION REGISTERS	SUMMARY BANK 0

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

2: Read only register.

3: PIC12F615/617/HV615 only.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | TOIF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt
bit 3	GPIE: GPIO Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt
bit 2	TolF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PMDATL7 | PMDATL6 | PMDATL5 | PMDATL4 | PMDATL3 | PMDATL2 | PMDATL1 | PMDATL0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

-n = Value at POR

PMDATL<7:0>: 8 Least Significant Address bits to Write or Read from Program Memory

REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	

'0' = Bit is cleared

bit 7-0 **PMADRL<7:0>**: 8 Least Significant Address bits for Program Memory Read/Write Operation

REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PMDATH5	PMDATH4	PMDATH3	PMDATH2	PMDATH1	PMDATH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDATH<5:0>: 6 Most Significant Data bits from Program Memory

'1' = Bit is set

REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	—	—	—	—	PMADRH2	PMADRH1	PMADRH0					
bit 7 bit (
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'												
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						wn						

bit 3 Unimplemented: Read as '0'

bit 2-0 **PMADRH<2:0>**: Specifies the 3 Most Significant Address bits or high bits for program memory reads.

x = Bit is unknown

REGISTER 5-2: TRISIO: GPIO TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1			
—	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplem	ented bit, read as	'0'				
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$						

bit 7-6 Unimplemented: Read as '0'

TRISIO<5:0>: GPIO Tri-State Control bit

1 = GPIO pin configured as an input (tri-stated)

0 = GPIO pin configured as an output

Note 1: TRISIO<3> always reads '1'.

bit 5-0

2: TRISIO<5:4> always reads '1' in XT, HS and LP Oscillator modes.

5.2 Additional Pin Functions

Every GPIO pin on the PIC12F609/615/617/12HV609/ 615 has an interrupt-on-change option and a weak pullup option. The next three sections describe these functions.

5.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

5.2.2 WEAK PULL-UPS

Each of the GPIO pins, except GP3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 5-5. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit of the OPTION register). A weak pull-up is automatically enabled for GP3 when configured as MCLR and disabled when GP3 is an I/O. There is no software control of the MCLR pull-up.

5.2.3 INTERRUPT-ON-CHANGE

Each GPIO pin is individually configurable as an interrupt-on-change pin. Control bits IOCx enable or disable the interrupt function for each pin. Refer to Register 5-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The 'mismatch' outputs of the last read are OR'd together to set the GPIO Change Interrupt Flag bit (GPIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- Any read of GPIO AND Clear flag bit GPIF. This will end the mismatch condition;
 OR
- b) Any write of GPIO AND Clear flag bit GPIF will end the mismatch condition;

A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these resets, the GPIF flag will continue to be set if a mismatch is present.

Note:	If a change on the I/O pin should occur
	when any GPIO operation is being
	executed, then the GPIF interrupt flag may
	not get set.

NOTES:

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

9.3 Comparator Control

The comparator has two control and Configuration registers: CMCON0 and CMCON1. The CMCON1 register is used for controlling the interaction with Timer1 and simultaneously reading the comparator output.

The CMCON0 register (Register 9-1) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- · Output selection
- Output polarity

9.3.1 COMPARATOR ENABLE

Setting the CMON bit of the CMCON0 register enables the comparator for operation. Clearing the CMON bit disables the comparator for minimum current consumption.

9.3.2 COMPARATOR INPUT SELECTION

The CMCH bit of the CMCON0 register directs one of four analog input pins to the comparator inverting input.

Note: To use CIN+ and CIN- pins as analog inputs, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

9.3.3 COMPARATOR REFERENCE SELECTION

Setting the CMR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 9.10 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

9.3.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the COUT bit of the CMCON0 register. In order to make the output available for an external connection, the following conditions must be true:

- CMOE bit of the CMxCON0 register must be set
- Corresponding TRIS bit must be cleared
- CMON bit of the CMCON0 register must be set.

Note 1:	The CMOE bit overrides the PORT data
	latch. Setting the CMON has no impact
	on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

9.3.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CMPOL bit of the CMCON0 register. Clearing CMPOL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 9-1.

Input Conditions	CMPOL	COUT
CMVIN- > CMVIN+	0	0
CMVIN- < CMVIN+	0	1
CMVIN - > CMVIN +	1	1
CMVIN- < CMVIN+	1	0

TABLE 9-1: OUTPUT STATE VS. INPUT CONDITIONS

Note: COUT refers to both the register bit and output pin.

9.4 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See **Section 16.0 "Electrical Specifications"** for more details.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B	on OR	Value all of Res	e on ther ets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 00	000	0-00	0000
CCPR1L	Capture/C	ompare/PW	/M Register	1 Low Byte					XXXX XX	xxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	/M Register	1 High Byte	9				XXXX XX	xxx	uuuu	uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 00	000	0000	0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	-	CMIE	—	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-	-00	-00-	0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾		CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-	-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 00	000	uuuu	uuuu
TMR1L	Holding R	egister for tl	he Least Sig	gnificant Byt	e of the 16-b	bit TMR1 Re	egister		XXXX XX	xxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XX	xxx	uuuu	uuuu
TMR2	Timer2 Module Register								0000 00	000	0000	0000
TRISIO		—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 13	111	11	1111

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

Note 1: For PIC12F615/617/HV615 only.

11.3.1 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 11-1.

EQUATION 11-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPR1L into CCPR1H.

Note:	The Timer2 postscaler (see Section 8.1
	"Timer2 Operation") is not used in the
	determination of the PWM frequency.

11.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the DC1B<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 11-2 is used to calculate the PWM pulse width.

Equation 11-3 is used to calculate the PWM duty cycle ratio.

EQUATION 11-2: PULSE WIDTH

 $Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 11-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPR1L:CCP1CON < 5:4>)}{4(PR2 + 1)}$$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 11-3).

11.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4.

EQUATION 11-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 11-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

bit 7							bit 0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
R/W-0							

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 PRS

PRSEN: PWM Restart Enable bit

1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically

0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC<6:0>: PWM Delay Count bits

PDCn =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

TABLE 11-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
APFCON	_	_		T1GSEL	_	_	P1BSEL	P1ASEL	000	000
CCP1CON ⁽¹⁾	P1M	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
CCPR1L ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 L	ow Byte					xxxx xxxx	uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 H	ligh Byte					xxxx xxxx	uuuu uuuu
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	—	CMCH	0000 -0-0	0000 -0-0
CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	0 0-10
ECCPAS ⁽¹⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
T2CON ⁽¹⁾	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2 ⁽¹⁾	Timer2 Module Register									0000 0000
TRISIO		_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

Note 1: For PIC12F615/617/HV615 only.

FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

BTFSS	Bit Test f, Skip if Set		
Syntax:	[label] BTFSS f,b		
Operands:	$0 \le f \le 127$ $0 \le b < 7$		
Operation:	skip if (f) = 1		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.		

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f	
Syntax:	[<i>label</i>] CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RLF	Rotate Left f through Carry		
Syntax:	[<i>label</i>] RLF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	See description below		
Status Affected:	С		
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example:	RLF REG1,0		
	Before Instruction		
	REG1 = 1110 0110		
	C = 0		
	After Instruction		
	REG1 = 1110 0110		
	W = 1100 1100		
	C = 1		

SI FFP	Enter Sleen mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$00h \rightarrow WDT$,
•	$0 \rightarrow WDT$ prescaler,
	$1 \rightarrow \overline{\overline{\text{TO}}},$
	$0 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	The power-down Status bit, PD is cleared. Time-out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry	
Syntax:	[<i>label</i>] RRF f,d	
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in \left[0,1\right] \end{array}$	
Operation:	See description below	
Status Affected:	С	
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	
	C Register f	

SUBLW	Subtract W from literal		
Syntax:	[<i>label</i>] SUBLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \text{ - } (W) \to (W)$		
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.		
	Result	Condition	
	^		

Result	Condition
C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

TABLE 16-11: PIC12F615/617/HV615 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
AD01	Nr	Resolution	_		10 bits	bit	
AD02	EIL	Integral Error		—	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD03	Edl	Differential Error		_	±1	LSb	No missing codes to 10 bits VREF = 5.12V ⁽⁵⁾
AD04	EOFF	Offset Error	_	+1.5	+2.0	LSb	Vref = 5.12V ⁽⁵⁾
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	_	 Vdd	V	Absolute minimum to ensure 1 LSb accuracy
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source		_	10	kΩ	
AD09*	IREF	VREF Input Current ⁽³⁾	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
			_	_	50	μA	During A/D conversion cycle.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: VREF = 5V for PIC12HV615.

TABLE 16-12: PIC12F615/617/HV615 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
AD130*	TAD	A/D Clock Period	1.6	_	9.0	μS	Tosc-based, VREF $\geq 3.0V$
			3.0	—	9.0	μS	Tosc-based, VREF full range ⁽³⁾
		A/D Internal RC					ADCS<1:0> = 11 (ADRC mode)
		Oscillator Period	3.0	6.0	9.0	μS	At VDD = 2.5V
			1.6	4.0	6.0	μS	At VDD = 5.0V
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO/DONE bit to new data in A/D Result register
AD132*	TACQ	Acquisition Time		11.5	_	μS	
AD133*	Тамр	Amplifier Settling Time			5	μS	
AD134	Tgo	Q4 to A/D Clock Start	_	Tosc/2	—	—	
			_	Tosc/2 + Tcy	_		If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

- 2: See Section 10.3 "A/D Acquisition Requirements" for minimum conditions.
- 3: Full range for PIC12HV609/HV615 powered by the shunt regulator is the 5V regulated voltage.

FIGURE 16-10: PIC12F615/617/HV615 A/D CONVERSION TIMING (NORMAL MODE)

FIGURE 17-52: COMPARATOR RESPONSE TIME (FALLING EDGE)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: PIC12F609/615/617/12HV609/615	Literature Number: DS41302D
Que	stions:	
1.	What are the best features of this documen	t?
2.	How does this document meet your hardwa	are and software development needs?
3.	Do you find the organization of this docume	ent easy to follow? If not, why?
4	What additions to the document do you thin	k would enhance the structure and subject?
ч.		
5.	What deletions from the document could be	e made without affecting the overall usefulness?
6.	Is there any incorrect or misleading informa	tion (what and where)?
7.	How would you improve this document?	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10