E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f615-e-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

U-1	U-0	U-0	U-0	U-0	R/W-0	R/S-0	R/S-0
—	_	—	—	—	WREN	WR	RD
bit 7							bit 0

- bit 7 Unimplemented: Read as '1'
- bit 6-3 Unimplemented: Read as '0'
- bit 2 WREN: Program Memory Write Enable bit
 - 1 = Allows write cycles
 - 0 = Inhibits write to the EEPROM
- bit 1 WR: Write Control bit
 - 1 = Initiates a write cycle to program memory. (The bit is cleared by hardware when write is complete. The WR bit can only be set (not cleared) in software.)
 - 0 = Write cycle to the Flash memory is complete

bit 0 **RD:** Read Control bit

- 1 = Initiates a program memory read (The read takes one cycle. The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).
- 0 = Does not initiate a Flash memory read

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown			

FIGURE 3-1:	FLASH PROGRAM MEMORY READ CYCLE EXECUTION
	Q1 Q2 Q3 Q4
Flash ADDR	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Flash DATA	Image:
	INSTR (PC - 1) BSF PMCON1,RD INSTR (PC + 1) INSTR (PC + 3) INSTR (PC + 4) Executed here Executed here Executed here Executed here Executed here
RD bit	
PMDATH PMDATL Register	
PMRHLT	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4.4.1.1 OSCTUNE Register

The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 4-1). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4:0>: Frequency Tuning bits	
01111 = Maximum frequency	
01110 =	
•	
•	
•	
00001 =	
00000 = Oscillator module is running at the calibrated frequer	ıcy.
11111 =	
•	
•	
•	
10000 = Minimum frequency	

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCTUNE	—		—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

5.2.4.3 GP2/AN2⁽¹⁾/T0CKI/INT/COUT/ CCP1⁽¹⁾/P1A⁽¹⁾

Figure 5-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

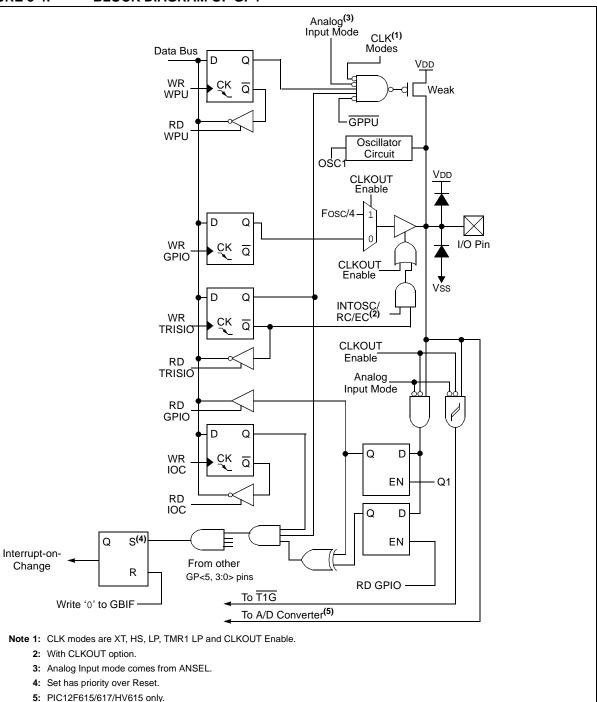
- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from Comparator
- a Capture input/Compare input/PWM output⁽¹⁾
- a PWM output⁽¹⁾

Analog⁽¹⁾ Input Mode Vdd Data Bus Weak D Q WR СΚ Q C10E GPPU WPU Enable Vdd RD WPU C10E X Q 0 I/O Pin **↓** Vss WR СК Q GPIO D Q WR CK Q TRISIO RD Analog⁽¹⁾ Input Mode TRISIO RD GPIO Q Q D WR СК Q IOC Q1 ΕN RD IOC D റ ΕN Q S⁽² Interrupt-on-From other Change R GP<5:3, 1:0> pins RD GPIO To Timer0 Write '0' to GBIF To INT To A/D Converter⁽³⁾ Note 1: Comparator mode and ANSEL determines Analog Input mode. Set has priority over Reset. 2: 3: PIC12F615/617/HV615 only.

FIGURE 5-2: BLOCK DIAGRAM OF GP2

Note 1: PIC12F615/617/HV615 only.

5.2.4.5 GP4/AN3⁽²⁾/CIN1-/T1G/ P1B^(1, 2)/OSC2/CLKOUT


Figure 5-4 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽²⁾
- Comparator inverting input
- a Timer1 gate (count enable)

FIGURE 5-4: BLOCK DIAGRAM OF GP4

- PWM output, alternate pin(1, 2)
- a crystal/resonator connection
- · a clock output

Note 1: Alternate pin function.2: PIC12F615/617/HV615 only.

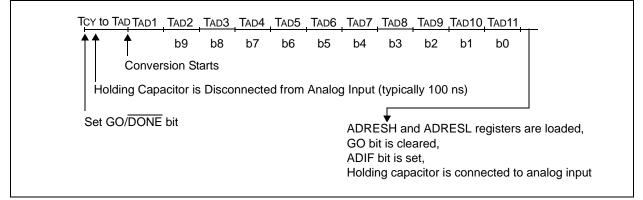
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0			
bit 7						·	bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ıd as '0'				
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7		Pull-up Enabl								
		ll-ups are disab		ual PORT latch	voluce in M/DI	Lragistor				
bit 6	•	errupt Edge Se	•			Jiegistei				
		on rising edge								
		on falling edge								
bit 5	T0CS: TMR0 Clock Source Select bit									
	1 = Transition on TOCKI pin									
	0 = Internal i	nstruction cycle	e clock (Fosc/	(4)						
bit 4	TOSE: TMR0	TOSE: TMR0 Source Edge Select bit								
		it on high-to-lov it on low-to-hig								
bit 3	PSA: Presca	PSA: Prescaler Assignment bit								
	1 = Prescaler is assigned to the WDT									
		r is assigned to		nodule						
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits							
	BIT	VALUE TMR0	RATE WDT R	ATE						
		000 1:2								
		001 1:4 010 1:8								
		011 1:1								
		100 1:3	-							
		101 1:6 110 1:1								
		111 1:2								

REGISTER 6-1: OPTION_REG: OPTION REGISTER

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TMR0	Timer0 M	odule Regis	ster						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000x
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TRISIO	—		TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.


TABLE 10-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)

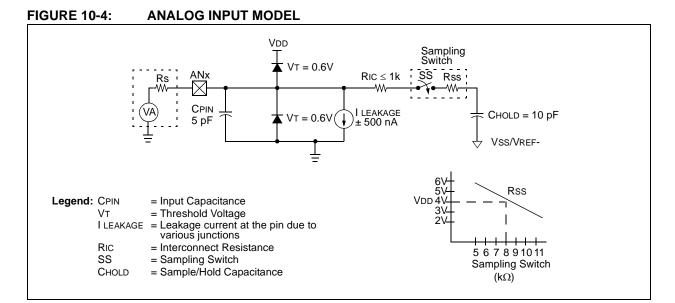
ADC Clock	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs			
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs			
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs (3)			
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾			
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾			
Fosc/64	110	3.2 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾			
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)			

Legend: Shaded cells are outside of recommended range.

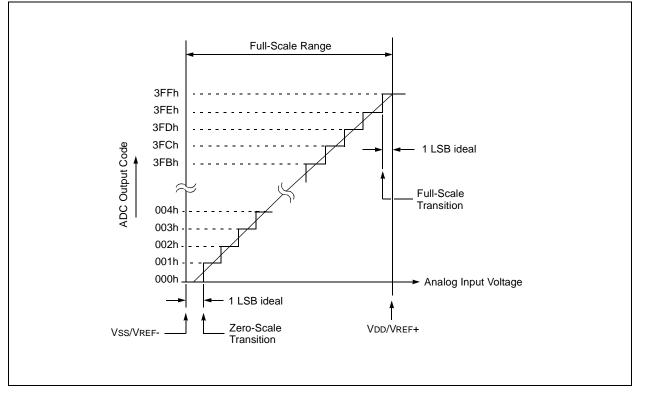
- **Note 1:** The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 10-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

10.1.5 INTERRUPTS


The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine.

Please see **Section 10.1.5** "Interrupts" for more information.

© 2010 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	all o	e on ther sets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00	0000	0-00	0000
CCPR1L	Capture/Compare/PWM Register 1 Low Byte									xxxx	uuuu	uuuu
CCPR1H	Capture/Compare/PWM Register 1 High Byte							xxxx	xxxx	uuuu	uuuu	
INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000	0000	0000	0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00-	0-00	-00-	0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00-	0-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu	
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu	
TRISIO	_	—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11	1111	11	1111

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

Note 1: For PIC12F615/617/HV615 only.

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

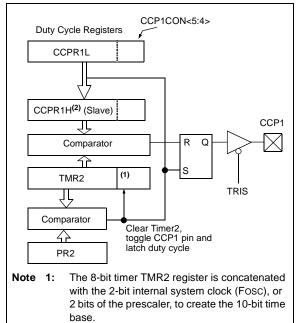
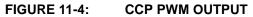
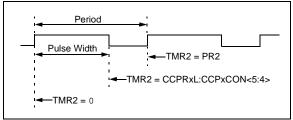

Note:	Clearing	the	CCP1CON	register	will
	relinquish	CCP	1 control of th	ne CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

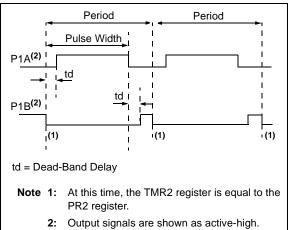
Figure 11-4 shows a typical waveform of the PWM signal.


For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

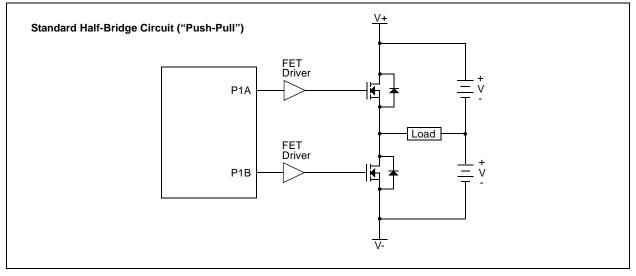

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

2: In PWM mode, CCPR1H is a read-only register.

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).



11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-13 for illustration. The lower seven bits of the associated PWMxCON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (Tcy or 4 Tosc).

FIGURE 11-13: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-14: EXAMPLE OF HALF-BRIDGE APPLICATIONS

NOTES:

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR PIC12F609/615/HV609/615 ONLY

U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
—	_	_	_	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	IOSCFS	CP ⁽²⁾	MCLRE ⁽³⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC		
oit 13	3												bit		
000	ndu														
Lege R = F	Readat	ole bit		W = Writable	e bit	P = Prog	rammab	le		U = Uni	mplement	ed bit, re	ad as '0'		
-n = \	Value a	at POR		'1' = Bit is se	et	'0' = Bit is	s cleared	ł		x = Bit i	s unknow	n			
bit 13	8-10	Ur	nimplen	nented: Read	as '1'										
bit 9-			•	I:0>: Brown-o		ction bits(1)								
Sit 0	0														
			11 = BOR enabled10 = BOR enabled during operation and disabled in Sleep												
				disabled											
bit 7				Internal Oscilla	ator Frequence	cy Select b	it								
			1 = 8 MHz 0 = 4 MHz												
bit 6		-		- Protection bit	(2)										
				am memory co		is disabla	Ч								
			•	am memory co	•										
bit 5			°_	/ ICLR Pin Fun	•	(-)									
		1 =	MCLR	pin function is	MCLR										
		0 =	MCLR	pin function is	digital input,	MCLR inte	ernally tie	ed to VDD							
bit 4		PW	/RTE: P	ower-up Time	r Enable bit										
	1 = PWRT disabled														
		0 =	PWRT	enabled											
bit 3		WD	DTE: Wa	atchdog Timer	Enable bit										
			WDT e												
			WDT d												
bit 2-	0			>: Oscillator S			000/01								
				scillator: CLK() oscillator: I/C											
			=INTO	SC oscillator: (95/OSC1/CLK	CLKOUT funct			• •							
		100) = INTC	SCIO oscillat 5/OSC1/CLK	or: I/O functio	on on GP4	/OSC2/0	CLKOUT pin	, I/O functi	on on					
		011		O function on		CLKOUT p	in, CLK	N on GP5/C	SC1/CLK	IN					
				scillator: High-							C1/CLKIN	l			
				scillator: Crys											
		000) = LP o	scillator: Low-	power crystal	on GP4/C	SC2/CL	KOUT and	GP5/OSC	1/CLKIN					
Note	1:	Enabli	ng Brow	n-out Reset d	oes not autor	natically e	nable Po	ower-up Tim	er.						
	2:		0	gram memory		-		•							
						<u> </u>									

3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

12.4 Interrupts

The PIC12F609/615/617/12HV609/615 has 8 sources of interrupt:

- External Interrupt GP2/INT
- Timer0 Overflow Interrupt
- GPIO Change Interrupts
- Comparator Interrupt
- A/D Interrupt (PIC12F615/617/HV615 only)
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt (PIC12F615/617/HV615 only)
- Enhanced CCP Interrupt (PIC12F615/617/HV615 only)
- Flash Memory Self Write (PIC12F617 only)

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset.

When an interrupt is serviced, the following actions occur automatically:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INTCON register:

- INT Pin Interrupt
- GPIO Change Interrupt
- Timer0 Overflow Interrupt

The peripheral interrupt flags are contained in the special register, PIR1. The corresponding interrupt enable bit is contained in special register, PIE1.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- Comparator Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt
- Enhanced CCP Interrupt

For external interrupt events, such as the INT pin or GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or twocycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, ADC, Enhanced CCP modules, refer to the respective peripheral section.

12.4.1 GP2/INT INTERRUPT

The external interrupt on the GP2/INT pin is edgetriggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The GP2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See **Section 12.7** "**Power-Down Mode (Sleep)**" for details on Sleep and Figure 12-9 for timing of wake-up from Sleep through GP2/INT interrupt.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0' and cannot generate an interrupt.

15.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

15.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

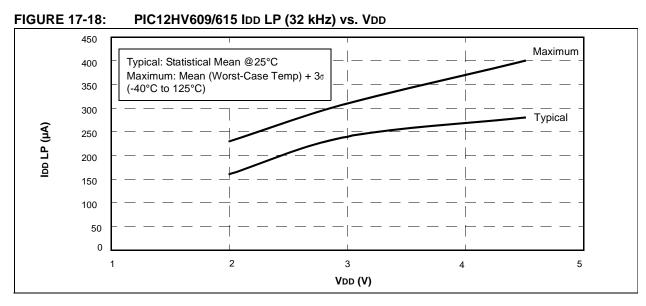

TABLE TO TO:				012101	<u>9-11 (11</u>	gii i ciii	P-)	
Param No.	Sym	Characteristic	Frequency Tolerance	Units	Min	Тур	Max	Conditions
OS08	INTosc	Int. Calibrated INTOSC Freq. ⁽¹⁾	±10%	MHz	7.2	8.0	8.8	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5 \text{V} \\ \text{-40}^{\circ}\text{C} \leq T \text{A} \leq 150^{\circ}\text{C} \end{array}$

TABLE 16-18: OSCILLATOR PARAMETERS FOR PIC12F615-H (High Temp.)

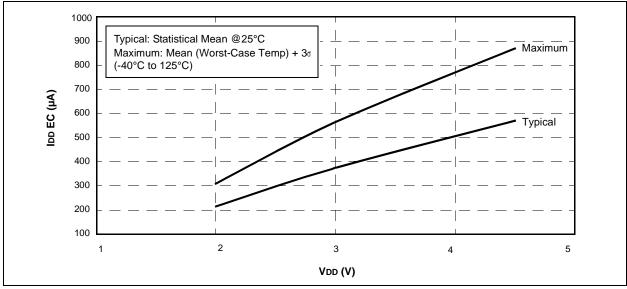
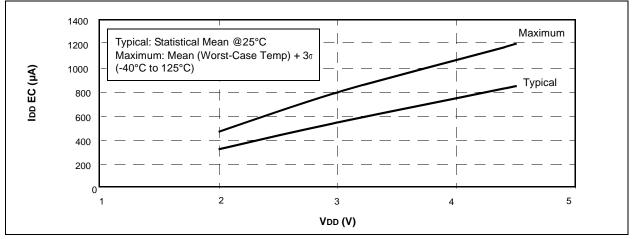
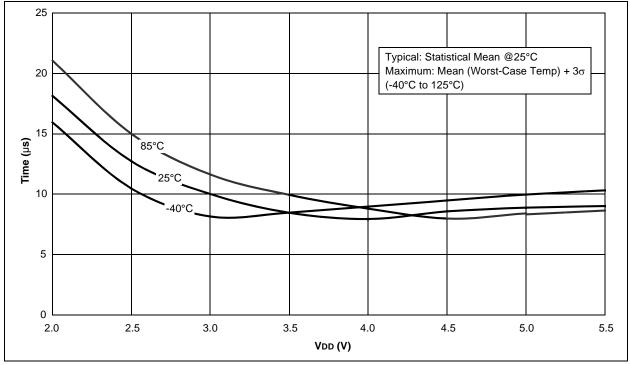

Note 1: To ensure these oscillator frequency tolerances, Vdd and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

TABLE 16-19: COMPARATOR SPECIFICATIONS FOR PIC12F615-H (High Temp.)


Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
CM01	Vos	Input Offset Voltage	mV	_	±5	±20	(Vdd - 1.5)/2



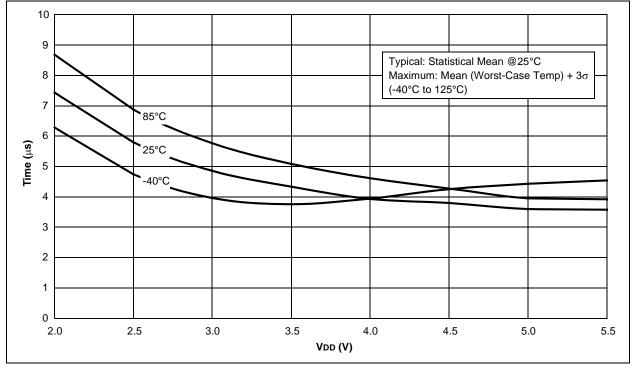


FIGURE 17-41: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC12F609/615/617/12HV609/615	Literature Number: DS41302D
Ques	stions:	
1. \	What are the best features of this docume	nt?
_		
2. H	How does this document meet your hardw	vare and software development needs?
_		
_		
3. E	Do you find the organization of this docum	nent easy to follow? If not, why?
-		
-		
4. V	What additions to the document do you th	ink would enhance the structure and subject?
-		
	AM	
5. N	What deletions from the document could t	be made without affecting the overall usefulness?
_		
- 6	s there any incorrect or misloading inform	ation (what and whata)?
0. I	s there any incorrect or misleading inform	
-		
- 7. H	How would you improve this document?	
-		
-		