

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f615-h-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Program Memory	Data Memory	Self Read/	1/0	10-bit A/D	Comporatora	ECCB	Timers	Voltaga Banga
Device	Flash (words) SRAM (bytes)	Self Write	1/0	(ch)	Comparators	ECCP	8/16-bit	voltage Kange	
PIC12F609	1024	64	—	5	0	1	_	1/1	2.0V-5.5V
PIC12HV609	1024	64	—	5	0	1	_	1/1	2.0V-user defined
PIC12F615	1024	64	—	5	4	1	YES	2/1	2.0V-5.5V
PIC12HV615	1024	64	—	5	4	1	YES	2/1	2.0V-user defined
PIC12F617	2048	128	YES	5	4	1	YES	2/1	2.0V-5.5V

8-Pin Diagram, PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)

TABLE 1: PIC12F609/HV609 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Comparators	Timer	Interrupts	Pull-ups	Basic
GP0	7	CIN+	—	IOC	Y	ICSPDAT
GP1	6	CIN0-	—	IOC	Y	ICSPCLK
GP2	5	COUT	TOCKI	INT/IOC	Y	—
GP3 ⁽¹⁾	4	—	—	IOC	Y ⁽²⁾	MCLR/Vpp
GP4	3	CIN1-	T1G	IOC	Y	OSC2/CLKOUT
GP5	2	—	T1CKI	IOC	Y	OSC1/CLKIN
_	1	_	_	_	_	VDD
_	8					Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External GP2/INT interrupt
- Timer0
- Weak pull-ups on GPIO

REGISTER 2-2: OPTION_REG: OPTION REGISTER

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 6.1.3 "Software Programmable Prescaler".

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin
bit 5	TOCS: Timer0 Clock Source Select bit 1 = Transition on GP2/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin
bit 3	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	BIT VALUE HIVERO RATE WUT RATE

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1 : 128

4.3.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

- 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).
- **3:** An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

5.0 I/O PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

5.1 GPIO and the TRISIO Registers

GPIO is a 6-bit wide port with 5 bidirectional and 1 inputonly pin. The corresponding data direction register is TRISIO (Register 5-2). Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., disable the output driver). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRIS bit will always read as '1'. Example 5-1 shows how to initialize GPIO.

Note:	GPIO = PORTA
	TRISIO = TRISA

Reading the GPIO register (Register 5-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. GP3 reads '0' when MCLRE = 1.

The TRISIO register controls the direction of the GPIO pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0' and cannot generate an interrupt.

EXAMPLE 5-1: INITIALIZING GPIO

BANKSEL	GPIO	;
CLRF	GPIO	;Init GPIO
BANKSEL	ANSEL	;
CLRF	ANSEL	;digital I/O, ADC clock
		;setting `don't care'
MOVLW	0Ch	;Set GP<3:2> as inputs
MOVWF	TRISIO	;and set GP<5:4,1:0>
		;as outputs

REGISTER 5-1: GPIO: GPIO REGISTER

U-0	U-0	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x	
—	—	GP5	GP4	GP3	GP2	GP1	GP0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit	t	U = Unimplem	ented bit, read as	s 'O'		
-n = Value at POP	۲	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

'0'

bit 5-0 **GP<5:0>**: GPIO I/O Pin bit

1 = GPIO pin is > VIH 0 = GPIO pin is < VIL

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	
—	—	WPU5	WPU4	—	WPU2	WPU1	WPU0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-6	Unimplemen	ted: Read as '	o'					
bit 5-4	WPU<5:4>: Weak Pull-up Control bits							
1 = Pull-up enabled								
	0 = Pull-up di	sabled						
bit 3	WPU<3>: We	eak Pull-up Reg	gister bit ⁽³⁾					

REGISTER 5-5: WPU: WEAK PULL-UP GPIO REGISTER

bit 2-0 WPU<2:0>: Weak Pull-up Control bits

1 = Pull-up enabled

0 =Pull-up disabled

Note 1: Global GPPU must be enabled for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).
- **3:** The GP3 pull-up is enabled when configured as MCLR in the Configuration Word, otherwise it is disabled as an input and reads as '0'.
- 4: WPU<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 5-6: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		IOC5	IOC4	IOC3	IOC2	IOC1	IOC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOC<5:0>: Interrupt-on-change GPIO Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOC<5:4> always reads '1' in XT, HS and LP Oscillator modes.

9.0 COMPARATOR MODULE

The comparator can be used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparator is a very useful mixed signal building block because it provides analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Programmable input section
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- PWM shutdown
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference
- User-enable Comparator Hysteresis

9.1 Comparator Overview

The comparator is shown in Figure 9-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less

than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 9-1:SINGLE COMPARATOR

els and the

FIGURE 9-2: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

9.11 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

10.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

10.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

10.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 10.2 "ADC Operation"** for more information.

10.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

10.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 10-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 16.0** "**Electrical Specifications**" for more information. Table 10-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

10.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 10-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 10-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 10-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 10-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$

$$= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-T_{C}}{R_{C}}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED}$$

$$V_{APPLIED}\left(1-e^{\frac{-1}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{2047}\right) \quad (combining [1] and [2])$$

Solving for TC:

$$Tc = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$
$$= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$
$$= 1.37us$$

Therefore:

$$TACQ = 2\mu s + 1.37\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.67\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

TABLE 10-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0 ⁽¹⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	00-0 0000
ANSEL		ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
ADRESH ^(1,2)	A/D Result Register High Byte								xxxx xxxx	uuuu uuuu
ADRESL ^(1,2)	A/D Result Register Low Byte							xxxx xxxx	uuuu uuuu	
GPIO		—	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	x0 x000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1		ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
TRISIO		_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: x = unknown, u = unchanged, – = unimplemented read as '0'. Shaded cells are not used for ADC module.

Note 1: For PIC12F615/617/HV615 only.

2: Read Only Register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B	on OR	Value all of Res	e on ther ets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 00	000	0-00	0000
CCPR1L	Capture/C	ompare/PW	/M Register	1 Low Byte					XXXX XX	xxx	uuuu	uuuu
CCPR1H	Capture/Compare/PWM Register 1 High Byte								XXXX XX	xxx	uuuu	uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 00	000	0000	0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	-	CMIE	—	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-	-00	-00-	0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾		CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-	-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 00	000	uuuu	uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XX	xxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX XX	xxx	uuuu	uuuu	
TMR2	Timer2 Mo	odule Regis	ter						0000 00	000	0000	0000
TRISIO		—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 13	111	11	1111

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

Note 1: For PIC12F615/617/HV615 only.

bit 7							bit 0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
R/W-0							

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 PRS

PRSEN: PWM Restart Enable bit

1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically

0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC<6:0>: PWM Delay Count bits

PDCn =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

TABLE 11-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
APFCON	_			T1GSEL	_	_	P1BSEL	P1ASEL	000	000
CCP1CON ⁽¹⁾	P1M	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
CCPR1L ⁽¹⁾	Capture/Co	mpare/PWM	Register 1 L	ow Byte					xxxx xxxx	uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Compare/PWM Register 1 High Byte						xxxx xxxx	uuuu uuuu		
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	—	CMCH	0000 -0-0	0000 -0-0
CMCON1	_	_	_	T1ACS	CMHYS	—	T1GSS	CMSYNC	0 0-10	0 0-10
ECCPAS ⁽¹⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
T2CON ⁽¹⁾	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2 ⁽¹⁾	Timer2 Mod	lule Register							0000 0000	0000 0000
TRISIO		_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

Note 1: For PIC12F615/617/HV615 only.

NOTES:

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

14.2 Instruction	n Descriptions
------------------	----------------

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[label] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.

ANDWF	AND W with f	
Syntax:	[label] ANDWF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(W) .AND. (f) \rightarrow (destination)	
Status Affected:	Z	
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	

15.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

15.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

15.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

15.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

15.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

15.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

FIGURE 16-1: PIC12F609/615/617 VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le Ta \le +125^{\circ}C$

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

16.9 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym	Characteristic	Тур	Units	Conditions
TH01	θJA	Thermal Resistance	84.6*	C/W	8-pin PDIP package
		Junction to Ambient	149.5*	C/W	8-pin SOIC package
			211*	C/W	8-pin MSOP package
			60*	C/W	8-pin DFN 3x3mm package
			44*	C/W	8-pin DFN 4x4mm package
TH02	θJC	Thermal Resistance	41.2*	C/W	8-pin PDIP package
		Junction to Case	39.9*	C/W	8-pin SOIC package
			39*	C/W	8-pin MSOP package
			9*	C/W	8-pin DFN 3x3mm package
			3.0*	C/W	8-pin DFN 4x4mm package
TH03	TDIE	Die Temperature	150*	С	
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	Pinternal = Idd x Vdd (NOTE 1)
TH06	Pi/o	I/O Power Dissipation		W	$ PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH)) $
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tdie - Ta)/θja (NOTE 2)

* These parameters are characterized but not tested.

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: T_A = Ambient temperature.

FIGURE 17-32: PIC12HV609/615 IPD T1OSC vs. VDD

RLF	136
RRF	136
SLEEP	
SUBLW	136
SUBWF	
SWAPF	
XORLW	
XORWF	
Summary Table	
INTCON Register	
Internal Oscillator Block	
INTOSC	
Specifications	157. 158
Internal Sampling Switch (Rss) Impedance	
Internet Address	209
Interrupts	118
ADC	83
Associated Registers	120
Context Saving	121
GP2/INT	118
GPIO Interrupt-on-Change	110
Interrunt-on-Change	
Timor0	
INTOSC Specifications	
	107, 100

L

Load Conditions	55
-----------------	----

Μ

MCLR	1
Internal11	1
Memory Organization1	1
Data1	1
Program1	1
Microchip Internet Web Site	9
Migrating from other PICmicro Devices	3
MPLAB ASM30 Assembler, Linker, Librarian 140	С
MPLAB ICD 2 In-Circuit Debugger 147	1
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator147	1
MPLAB Integrated Development Environment Software 139	9
MPLAB PM3 Device Programmer14	1
MPLAB REAL ICE In-Circuit Emulator System	1
MPLINK Object Linker/MPLIB Object Librarian140	C

0

OPCODE Field Descriptions	
Operation During Code Protect	
Operation During Write Protect	
Operational Amplifier (OPA) Module	
AC Specifications	
OPTION Register	19
OPTION_REG Register	
Oscillator	
Associated registers	41, 63
Oscillator Module	
EC	
HS	
INTOSC	
INTOSCIO	
LP	
RC	
RCIO	
XT	

Oscillator Parameters
Oscillator Start-up Timer (UST)
OPECTIVE Register 41
USCIUNE Register
Р
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/
PWM (ECCP)
Packaging
Marking 195
PDIP Details 196
PCL and PCLATH
Stack
PCON Register
PICSTART Plus Development Programmer
PIE1 Register
Pin Diagram
PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)
PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN) 5
Pinout Descriptions
PIC12F609/12HV609
PIC12F615/617/12HV615 10
PIR1 Register
PMADRH and PMADRL Registers
PMCON1 and PMCON2 Registers
Power-Down Mode (Sleep)
Power-on Reset (POR)
Power-up Timer (PWRT)
Specifications
Precision Internal Oscillator Parameters 158
Prescaler
Shared WDT/Timer054
Switching Prescaler Assignment54
Program Memory 11
Map and Stack 11
Programming, Device Instructions
Protection Against Spurious Write
PWM Mode. See Enhanced Capture/Compare/PWM 97
PWM1CON Register
D

R

Reader Response
Reading the Flash Program Memory
Read-Modify-Write Operations 129
Registers
ADCON0 (ADC Control 0) 84
ADRESH (ADC Result High) with ADFM = 0) 85
ADRESH (ADC Result High) with ADFM = 1) 85
ADRESL (ADC Result Low) with ADFM = 0) 85
ADRESL (ADC Result Low) with ADFM = 1) 85
ANSEL (Analog Select) 45
APFCON (Alternate Pin Function Register) 24
CCP1CON (Enhanced CCP1 Control) 89
CMCON0 (Comparator Control 0) 72
CMCON1 (Comparator Control 1) 73
CONFIG (Configuration Word) 108
Data Memory Map (PIC12F609/HV609) 12
Data Memory Map (PIC12F615/617/HV615) 13
ECCPAS (Enhanced CCP Auto-shutdown Control). 102
EEDAT (EEPROM Data) 28
EEDATH (EEPROM Data) 28
GPIO 43
INTCON (Interrupt Control) 20
IOC (Interrupt-on-Change GPIO) 46
OPTION_REG (OPTION) 19