E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-e-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

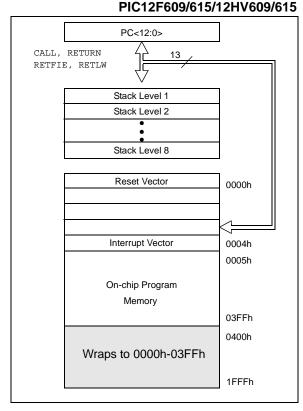
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002


Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

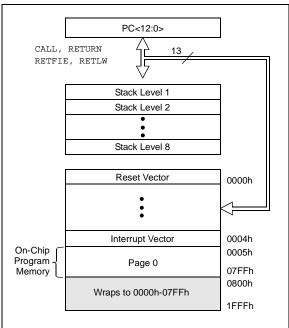

The PIC12F609/615/617/12HV609/615 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (000h-03FFh) for the PIC12F609/615/12HV609/615 is physically implemented. For the PIC12F617, the first 2K x 14 (0000h-07FFh) is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space for PIC12F609/615/12HV609/615 devices, and within the first 2K x 14 space for the PIC12F617 device. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE

FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC12F617

2.2 Data Memory Organization

The data memory (see Figure 2-3) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 40h-7Fh in Bank 0 are General Purpose Registers, implemented as static RAM. For the PIC12F617, the register locations 20h-7Fh in Bank 0 and A0h-EFh in Bank 1 are general purpose registers implemented as Static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns '0' when read. The RP0 bit of the STATUS register is the bank select bit.

<u>RP0</u>

- $0 \rightarrow \text{Bank 0 is selected}$
- $1 \rightarrow \text{Bank 1 is selected}$
- Note: The IRP and RP1 bits of the STATUS register are reserved and should always be maintained as '0's.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC12F609/615/12HV609/615, and as 128×8 in the PIC12F617. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-3:

DATA MEMORY MAP OF THE PIC12F609/HV609

	THE	PIC12F609/HV	609
	File Address		File Address
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	IOC	96h
	17h		97h
	18h		98h
VRCON	19h		99h
CMCON0	1Ah		9Ah
-	1Bh		9Bh
CMCON1	1Ch		9Ch
	1Dh		9Dh
	1Eh		9Eh
	1Fh	ANSEL	9Fh
	20h		A0h
	3Fh		
General Purpose Registers	40h		
64 Bytes	6Fh Z0h		EFh F0h
Accesses 70h-7Fh	70h 7Fh	Accesses 70h-7Fh	FUN
Bank 0		Bank 1	
	ata memor iysical regi	y locations, read as '0 ster.	·

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	ounter's (PC)	Least Signifi	icant Byte					0000 0000	25, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Data	a Memory Ac	Idress Pointe	er					xxxx xxxx	25, 116
85h	TRISIO			TRISIO5	TRISIO4	TRISIO3 ⁽⁴⁾	TRISIO2	TRISIO1	TRISIO0	11 1111	44, 116
86h	_	Unimplemen	nted							_	_
87h	_	Unimplemen	nted							_	_
88h	_	Unimplemen	nted							_	_
89h	_	Unimplemen	nted							—	—
8Ah	PCLATH	_	_	_	Writ	e Buffer for u	pper 5 bits of	Program Cou	unter	0 0000	25, 116
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF ⁽³⁾	0000 0000	20, 116
8Ch	PIE1	_	ADIE	CCP1IE	_	CMIE	_	TMR2IE	TMR1IE	-00- 0-00	21, 116
8Dh	_	Unimplemer	nted							—	—
8Eh	PCON	_	—	—	—	_	—	POR	BOR	dd	23, 116
8Fh	_	Unimplemen	nted							_	_
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	41, 116
91h	_	Unimplemen	nted							_	_
92h	PR2	Timer2 Mod	ule Period R	egister						1111 1111	65, 116
93h	APFCON	_	_	_	T1GSEL	_	_	P1BSEL	P1ASEL	000	21, 116
94h	_	Unimplemen	nted							_	_
95h	WPU ⁽²⁾	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	46, 116
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	46, 116
97h	_	Unimplemen	nted							_	_
98h	PMCON1 ⁽⁷⁾	_	—	—	—	_	WREN	WR	RD	000	29
99h	PMCON2 ⁽⁷⁾	Program Me	emory Contro	l Register 2	(not a physic	al register).					—
9Ah	PMADRL ⁽⁷⁾	PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0	0000 0000	28
9Bh	PMADRH ⁽⁷⁾	_	_	_	—	_	PMADRH2	PMADRH1	PMADRH0	000	28
9Ch	PMDATL ⁽⁷⁾	PMDATL7	PMDATL6	PMDATL5	PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATL0	0000 0000	28
9Dh	PMDATH ⁽⁷⁾	—	—	Program M	emory Data F	Register High	Byte.			00 0000	28
9Eh	ADRESL ^(5, 6)	Least Signif	icant 2 bits o	f the left shift	ed result or 8	bits of the rig	ght shifted res	sult		xxxx xxxx	85, 117
9Fh	ANSEL	—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	45, 117
Logon			sations road :			l		l	1	1	·

TABLE 2-4: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. GP3 pull-up is enabled when MCLRE is '1' in the Configuration Word register. Legend: Note 1:

2:

MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch 3: exists.

TRISIO3 always reads as '1' since it is an input only pin. 4:

Read only register. 5:

PIC12F615/617/HV615 only. 6:

7: PIC12F617 only.

9.0 COMPARATOR MODULE

The comparator can be used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparator is a very useful mixed signal building block because it provides analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Programmable input section
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- PWM shutdown
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference
- User-enable Comparator Hysteresis

9.1 Comparator Overview

The comparator is shown in Figure 9-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less

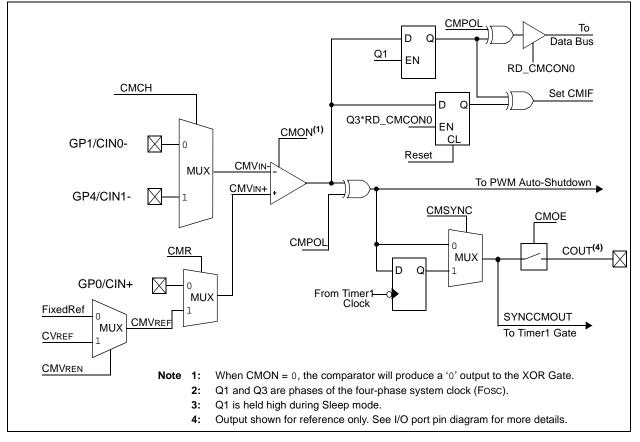

than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 9-1:SINGLE COMPARATOR

els and the

FIGURE 9-2: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

10.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

10.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

10.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 10.2 "ADC Operation"** for more information.

10.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

10.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 10-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 16.0 "Electrical Specifications"** for more information. Table 10-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

11.0 ENHANCED CAPTURE/ COMPARE/PWM (WITH AUTO-SHUTDOWN AND DEAD BAND) MODULE (PIC12F615/617/ HV615 ONLY)

The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event.The Compare mode allows the user to trigger an external

event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

Table 11-1 shows the timer resources required by the ECCP module.

TABLE 11-1: ECCP MODE – TIMER RESOURCES REQUIRED

ECCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M		DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
							-
bit 7	<u>If CCP1M<3:2</u> x = P1A assig <u>If CCP1M<3:2</u> 0 = Single ou	2 <u>> = 11:</u> itput; P1A modu	: e/Compare in ulated; P1B as	put; P1B assign ssigned as port p d with dead-bar	oins	5	
bit 6	Unimplemen	ted: Read as '	0'				
	DC1B<1:0>: PWM Duty Cycle Least Significant bits <u>Capture mode:</u> Unused. <u>Compare mode:</u> Unused. <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.						
bit 3-0							

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 4.0** "Oscillator Module" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

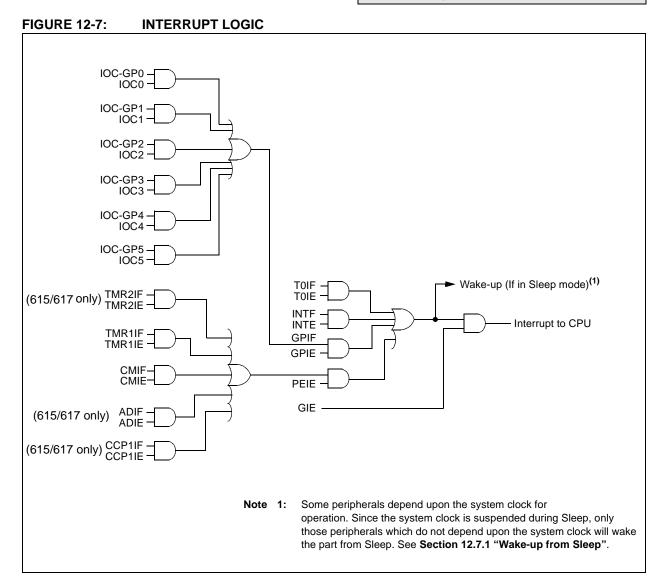
The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register.
- 5. Configure and start Timer2:
- Clear the TMR2IF interrupt flag bit of the PIR1 register.
- Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
- Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCP1 pin output driver by clearing the associated TRIS bit.

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR PIC12F609/615/HV609/615 ONLY

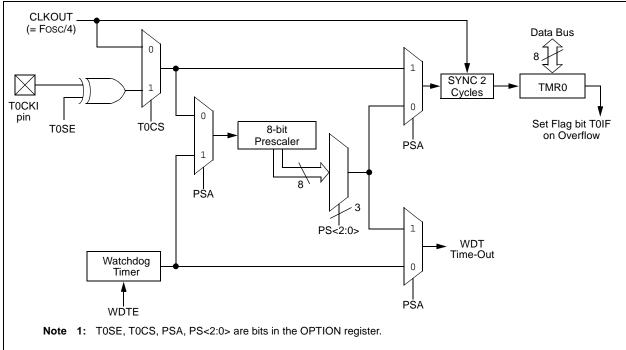
U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	_	_	_	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	IOSCFS	CP ⁽²⁾	MCLRE ⁽³⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC
oit 13	3							I					bit
000	ndu												
Lege R = F	Readat	ole bit		W = Writable	e bit	P = Prog	rammab	le		U = Uni	mplement	ed bit, re	ad as '0'
-n = \	Value a	at POR		'1' = Bit is se	et	'0' = Bit is	s cleared	ł		x = Bit i	s unknow	n	
bit 13	8-10	Un	implen	nented: Read	as '1'								
bit 9-			•	I:0>: Brown-o		ction hits(1)						
Sit 0	0			enabled									
				enabled durir	ig operation a	and disable	ed in Sle	ер					
				disabled									
bit 7				Internal Oscilla	ator Frequence	cy Select b	it						
			= 8 MHz = 4 MHz										
h:+ C		-		Protection bit	(2)								
bit 6				am memory co		ic dicabla	d						
			•		•								
bit 5			0 = Program memory code protection is enabled MCLRE: MCLR Pin Function Select bit ⁽³⁾										
				pin function is									
				pin function is		MCLR inte	ernally tie	ed to VDD					
bit 4		PW	RTE: P	ower-up Time	r Enable bit								
		1 =	PWRT	disabled									
		0 =	PWRT	enabled									
bit 3		WD	DTE: Wa	atchdog Timer	Enable bit								
			WDT e										
			WDT d										
bit 2-	0			>: Oscillator S		0040	000/01						
				scillator: CLK() oscillator: I/C									
				SC oscillator: (IIN		
				5/OSC1/CLK					.,				
		100 = INTOSCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN											
		011	011 =EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN										
			010 =HS oscillator: High-speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN										
		001 = XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN											
		000	= LP o	scillator: Low-	power crystal	on GP4/C	SC2/CL	KOUT and	GP5/OSC	1/CLKIN			
Note	1.	Enabli	na Brow	n-out Reset d	nes not autor	natically o	nahla D/	wor-un Tim	or				
NOLE	2:		0	gram memory		-		•					
				J			P						

3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.


12.4.2 TIMER0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing T0IE bit of the INTCON register. See **Section 6.0 "Timer0 Module"** for operation of the Timer0 module.

12.4.3 GPIO INTERRUPT-ON-CHANGE


An input change on GPIO sets the GPIF bit of the INTCON register. The interrupt can be enabled/ disabled by setting/clearing the GPIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register.

Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set.

12.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time out occurs.

FIGURE 12-2: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-8: WDT STATUS

Conditions	WDT	
WDTE = 0		
CLRWDT Command	Cleared	
Oscillator Fail Detected	Cleared	
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK		
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST	

TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
CONFIG	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	—	—

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of all Configuration Word register bits.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0						
Syntax:	[label] INCFSZ f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0						
Status Affected:	None						
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.						

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

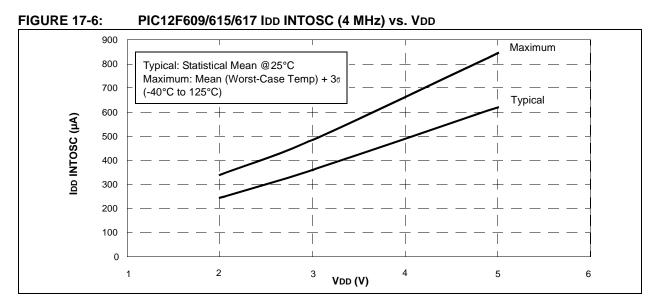
IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$					
Status Affected:	None					
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT- CON<7>). This is a two-cycle instruction.					
Words:	1					
Cycles:	2					
Example:	RETFIE					
	After Interrupt PC = TOS GIE = 1					

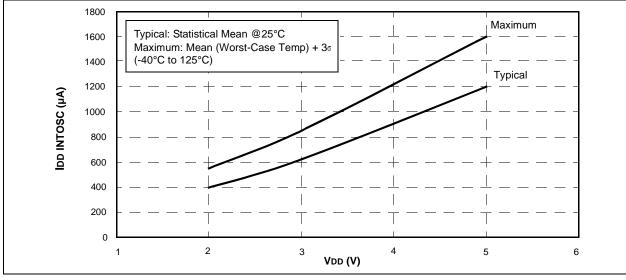
RETLW	Return with literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
<u>Example:</u>	CALL TABLE;W contains ;table offset ;value GOTO DONE
TABLE	• • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ;End of table
DONE	Before Instruction W = 0x07 After Instruction W = value of k8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

DC CHA	RACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param Device Characteristics		Min	Тур†	Max	Units	Conditions	
No.					•	Vdd	Note
D020E	Power-down Base	-	135	200	μΑ	2.0	WDT, BOR, Comparator, VREF and
		_	210	280	μΑ	3.0	T1OSC disabled
	PIC12HV609/615	_	260	350	μA	4.5	
D021E		—	135	200	μA	2.0	WDT Current ⁽¹⁾
		_	210	285	μΑ	3.0	
		_	265	360	μΑ	4.5	
D022E		—	215	285	μA	3.0	BOR Current ⁽¹⁾
		_	265	360	μΑ	4.5	
D023E		—	185	280	μA	2.0	Comparator Current ⁽¹⁾ , single
		—	265	360	μΑ	3.0	comparator enabled
		—	320	430	μΑ	4.5	
D024E		—	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)
		—	255	330	μΑ	3.0	
		—	330	430	μΑ	4.5	
D025E*			175	245	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)
		—	275	350	μΑ	3.0	
		—	355	450	μA	4.5	
D026E		-	140	205	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz
		_	220	290	μΑ	3.0	
		—	270	360	μΑ	4.5	
D027E			210	280	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in
		—	260	350	μΑ	4.5	progress

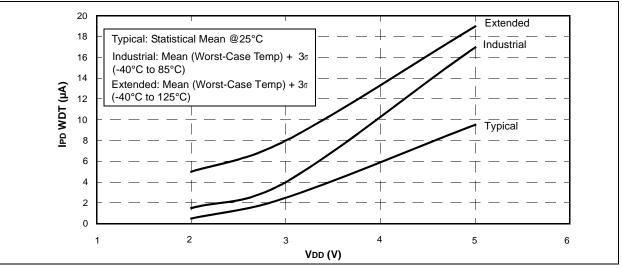
16.7 DC Characteristics: PIC12HV609/615-E (Extended)

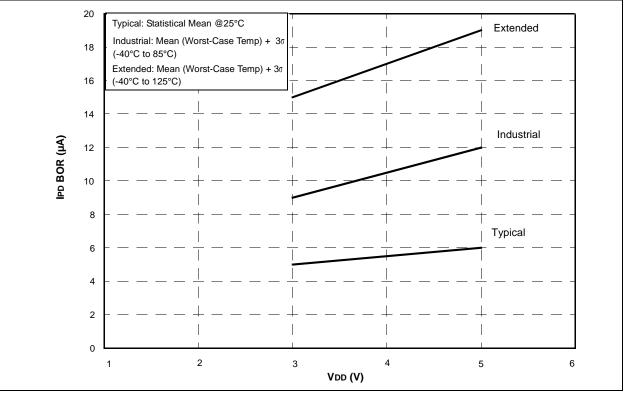

* These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.


3: Shunt regulator is always on and always draws operating current.



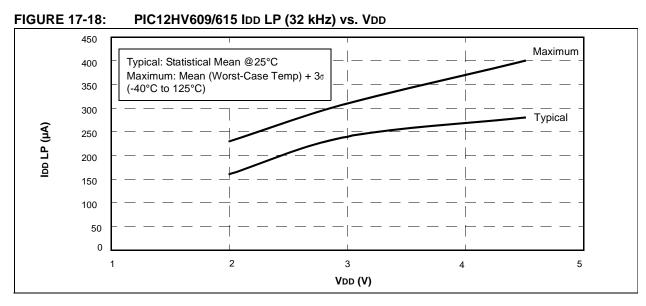
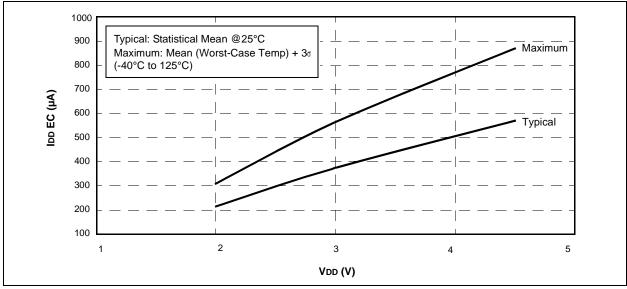
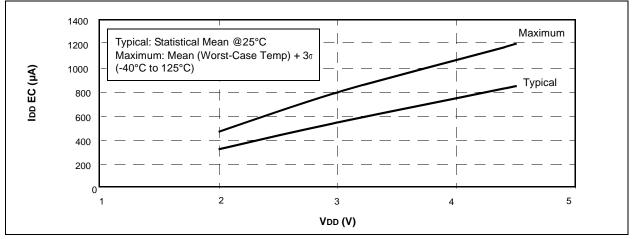
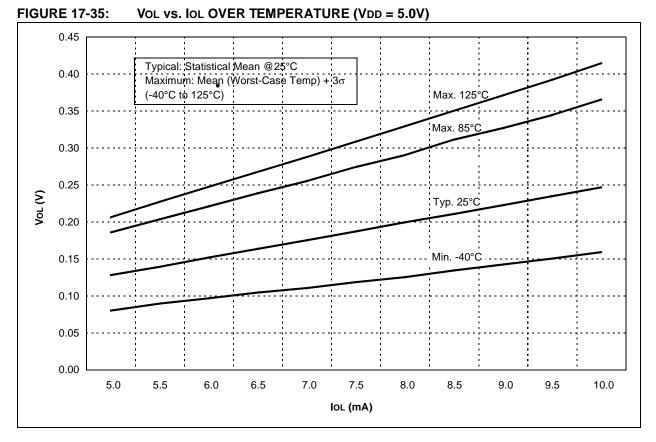
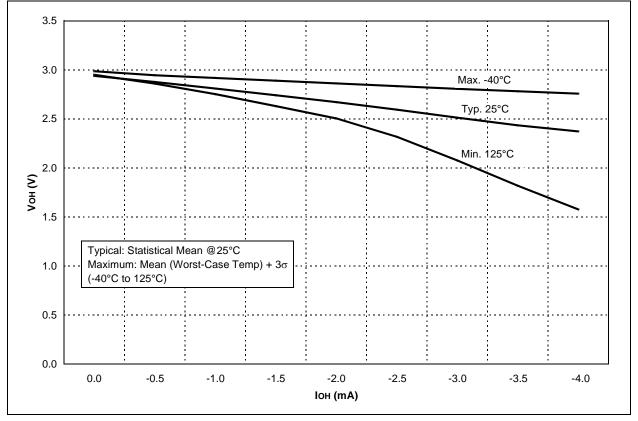


FIGURE 17-12: PIC12F609/615/617 IPD WDT vs. VDD









© 2010 Microchip Technology Inc.

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

Initializing GPIO	43
Saving Status and W Registers in RAM	121
Writing to Flash Program Memory	
Code Protection	124
Comparator	67
Associated registers	78
Control	69
Gating Timer1	73
Operation During Sleep	71
Overview	67
Response Time	69
Synchronizing COUT w/Timer1	73
Comparator Hysteresis	77
Comparator Voltage Reference (CVREF)	74
Effects of a Reset	71
Comparator Voltage Reference (CVREF)	
Response Time	69
Comparator Voltage Reference (CVREF)	
Specifications	163
Comparators	
C2OUT as T1 Gate	60
Effects of a Reset	71
Specifications	162
Compare Module. See Enhanced Capture/Compare/	
PWM (ECCP) (PIC12F615/617/HV615 only)	
CONFIG Register	108
Configuration Bits	107
CPU Features	
Customer Change Notification Service	209
Customer Notification Service	
Customer Support	

D

Data EEPROM Memory	
Associated Registers	35
Data Memory	11
DC and AC Characteristics	
Graphs and Tables	171
DC Characteristics	
Extended and Industrial	
Industrial and Extended	145
Development Support	
Device Overview	7

Ε

ECCP. See Enhanced Capture/Compare/PWM	
ECCPAS Register	
EEDAT Register	
EEDATH Register	
Effects of Reset	
PWM mode	96
Electrical Specifications	143
Enhanced Capture/Compare/PWM (ECCP)	
Enhanced PWM Mode	97
Auto-Restart	103
Auto-shutdown	-
Half-Bridge Application	
Half-Bridge Application Examples	104
Half-Bridge Mode	
Output Relationships (Active-High and	
Active-Low)	
Output Relationships Diagram	98
Programmable Dead Band Delay	104
Shoot-through Current	104
Start-up Considerations	
Specifications	162

Timer Resources	89
Enhanced Capture/Compare/PWM	
(PIC12F615/617/HV615 Only)	89
Errata	. 6

F

Firmware Instructions	29
Flash Program Memory Self Read/Self Write	
Control (For PIC12F617 only) 2	27
Fuses. See Configuration Bits	

G

General Purpose Register File	12
GPIO	43
Additional Pin Functions	44
ANSEL Register	44
Interrupt-on-Change	44
Weak Pull-Ups	44
Associated registers	52
GP0	47
GP1	47
GP2	48
GP3	49
GP4	50
GP5	51
Pin Descriptions and Diagrams	47
Specifications	
GPIO Register	43

Н

High	Temperature	Operation	167

I

ID Locations	12	24
In-Circuit Debugger	12	25
In-Circuit Serial Programming (ICSP)	12	25
Indirect Addressing, INDF and FSR registers	2	25
Instruction Format		
Instruction Set	12	29
ADDLW	13	31
ADDWF	13	31
ANDLW	13	31
ANDWF	13	31
MOVF	13	34
BCF	13	31
BSF	13	31
BTFSC	13	31
BTFSS	13	32
CALL	13	32
CLRF	13	32
CLRW	13	32
CLRWDT	13	32
COMF	13	32
DECF	13	32
DECFSZ	13	33
GOTO	13	33
INCF	13	33
INCFSZ	13	33
IORLW	13	33
IORWF	13	33
MOVLW	13	34
MOVWF	13	34
NOP	13	34
RETFIE	13	35
RETLW	13	35
RETURN	13	35