

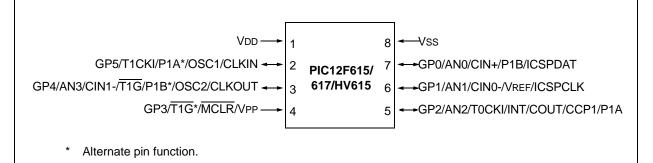
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

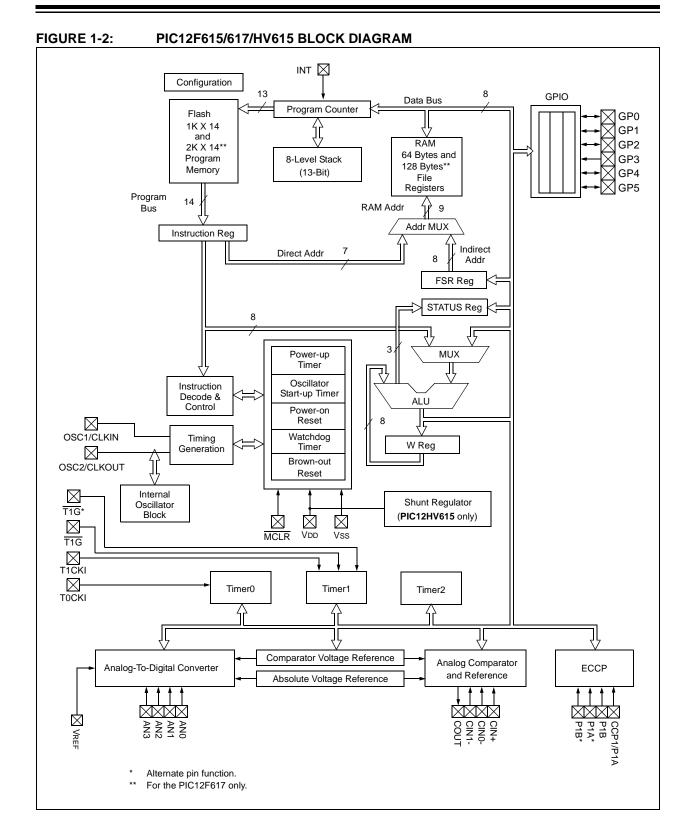

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-e-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN)


TABLE 2: PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Analog	Comparator s	Timer	ССР	Interrupts	Pull-ups	Basic
GP0	7	AN0	CIN+	_	P1B	IOC	Y	ICSPDAT
GP1	6	AN1	CIN0-	—	—	IOC	Y	ICSPCLK/VREF
GP2	5	AN2	COUT	T0CKI	CCP1/P1A	INT/IOC	Y	—
GP3 ⁽¹⁾	4		—	T1G*	_	IOC	Y(2)	MCLR/VPP
GP4	3	AN3	CIN1-	T1G	P1B*	IOC	Y	OSC2/CLKOUT
GP5	2	-	—	T1CKI	P1A*	IOC	Y	OSC1/CLKIN
—	1	—	—	—	—	—	—	Vdd
—	8		—	_	_	_	—	Vss

* Alternate pin function.

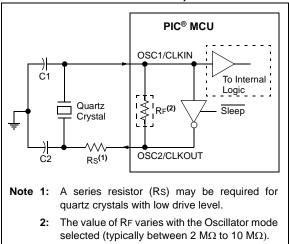
Note 1: Input only.

2: Only when pin is configured for external MCLR.

FIGURE 3-1:	FLASH PROGRAM MEMORY READ CYCLE EXECUTION
	Q1 Q2 Q3 Q4
Flash ADDR	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Flash DATA	Image:
	INSTR (PC - 1) BSF PMCON1,RD INSTR (PC + 1) INSTR (PC + 3) INSTR (PC + 4) Executed here Executed here Executed here Executed here Executed here
RD bit	
PMDATH PMDATL Register	
PMRHLT	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4.3.3 LP, XT, HS MODES

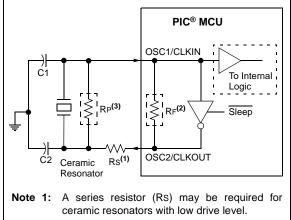
The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.


FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

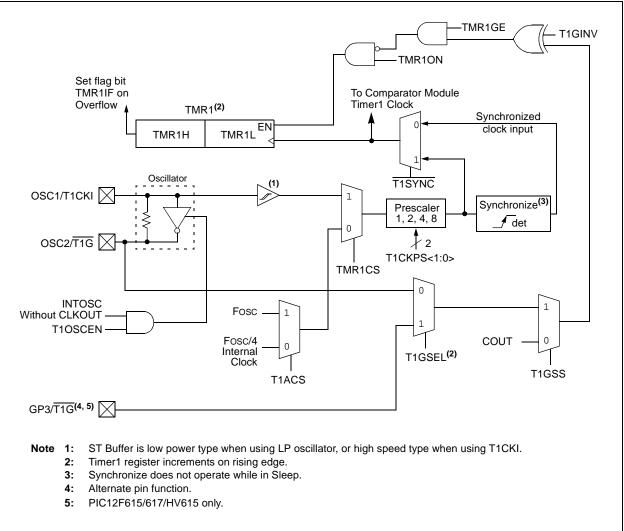
- 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).
- **3:** An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1
—	—	—	—	ANS3	—	ANS1	ANS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	ANS3: Analog Select Between Analog or Digital Function on Pin GP4 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
bit 2	Unimplemented: Read as '0'
bit 1	 ANS1: Analog Select Between Analog or Digital Function on Pin GP1 1 = Analog input. Pin is assigned as analog input.⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or special function.
bit 0	 ANS0: Analog Select Between Analog or Digital Function on Pin GP0 0 = Digital I/O. Pin is assigned to port or special function. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.


REGISTER 5-4: ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615)

U-0	R/W-1						
—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented : Read as '0'
bit 6-4	ADCS<2:0>: A/D Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32
	x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64
bit 3-0	ANS<3:0> : Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
Note 1:	Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on- change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

11.0 ENHANCED CAPTURE/ COMPARE/PWM (WITH AUTO-SHUTDOWN AND DEAD BAND) MODULE (PIC12F615/617/ HV615 ONLY)

The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event.The Compare mode allows the user to trigger an external

event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

Table 11-1 shows the timer resources required by the ECCP module.

TABLE 11-1: ECCP MODE – TIMER RESOURCES REQUIRED

ECCP Mode	Timer Resource		
Capture	Timer1		
Compare	Timer1		
PWM	Timer2		

REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M		DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
							-
bit 7	<u>If CCP1M<3:2</u> x = P1A assig <u>If CCP1M<3:2</u> 0 = Single ou	2 <u>> = 11:</u> itput; P1A modu	<u>:</u> e/Compare in ulated; P1B as	put; P1B assign ssigned as port p d with dead-bar	oins	5	
bit 6	Unimplemen	ted: Read as '	0'				
	<u>Capture mode</u> Unused. <u>Compare moc</u> Unused. <u>PWM mode:</u>	<u>le:</u>	Ţ	uty cycle. The ei	ght MSbs are t	found in CCPR1	IL.
bit 3-0	0000 =Captur 0001 =Unuse 0010 =Compa 0011 =Unuse 0100 =Captur 0101 =Captur 0111 =Captur 0111 =Captur 1000 =Compa 1001 =Compa 1011 =Compa 1011 =Compa 1011 =Compa 1011 =CWM 1100 =PWM	are mode, tóggl d (reserved) re mode, every re mode, every re mode, every re mode, every are mode, set o are mode, clear are mode, gene	/M off (resets e output on m falling edge 4th rising edg 16th rising edg 16th rising ed utput on matc output on matc output on matc rate software i er special ever the ADC modu ve-high; P1B a ve-high; P1B a	atch (CCP1IF b ge h (CCP1IF bit is tch (CCP1IF bit is tch (CCP1IF bit is ule is enabled) active-high active-low ctive-high	set) is set) ch (CCP1IF bit	is set, CCP1 pir sets TMR1 or Tf	n is unaffected) MR2 and starts

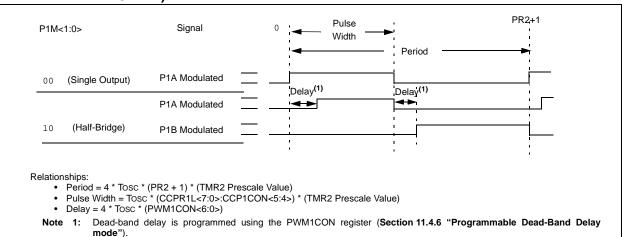
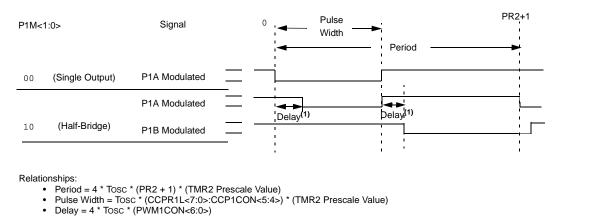

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		all c	e on other sets
CCP1CON	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00	0000	0-00	0000
CCPR1L	Capture/C	ompare/PW	/M Register	1 Low Byte					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	/M Register	1 High Byte	9				xxxx	xxxx	uuuu	uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000	0000	0000	0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00-	0-00	-00-	0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	-	TMR2IF ⁽¹⁾	TMR1IF	-00-	0-00	-00-	0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
TMR1L	Holding R	egister for tl	he Least Sig	nificant Byte	e of the 16-b	oit TMR1 Re	egister		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu	
TMR2	Timer2 Module Register							0000	0000	0000	0000	
TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11	1111	11	1111

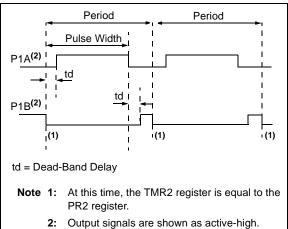
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE


Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

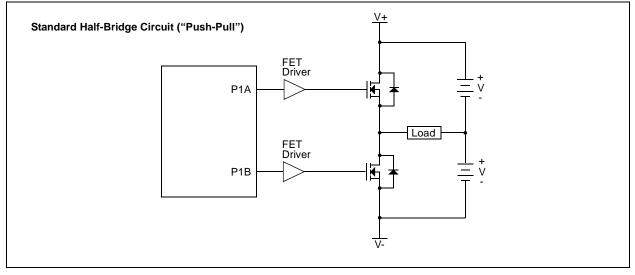
Note 1: For PIC12F615/617/HV615 only.

FIGURE 11-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)


Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 "Programmable Dead-Band Delay mode").

11.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-13 for illustration. The lower seven bits of the associated PWMxCON register (Register 11-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 11-13: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-14: EXAMPLE OF HALF-BRIDGE APPLICATIONS

NOTES:

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	_	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	00h/80h	xxxx xxxx	XXXX XXXX	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾
FSR	04h/84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
GPIO	05h	x0 x000	u0 u000	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 0000	uuuu uuuu (2)
PIR1	0Ch	00	00	uu (2)
TMR1L	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 0000	uuuu uuuu	-uuu uuuu
VRCON	19h	0-00 0000	0-00 0000	u-uu uuuu
CMCON0	1Ah	0000 -0-0	0000 -0-0	uuuu -u-u
CMCON1	1Ch	0 0-10	0 0-10	u u-qu
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
TRISIO	85h	11 1111	11 1111	uu uuuu
PIE1	8Ch	00	00	uu
PCON	8Eh	0x	(1, 5)	uu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
WPU	95h	11 -111	11 -111	uu -uuu
IOC	96h	00 0000	00 0000	uu uuuu
ANSEL	9Fh	1-11	1-11	d-dd

TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (PIC12F609/HV609)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 12-6 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

BTFSS	Bit Test f, Skip if Set						
Syntax:	[label] BTFSS f,b						
Operands:	$0 \le f \le 127$ $0 \le b < 7$						
Operation:	skip if (f) = 1						
Status Affected:	None						
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.						

CLRWDT	Clear Watchdog Timer						
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$						
Status Affected:	TO, PD						
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						

CALL	Call Subroutine					
Syntax:	[<i>label</i>] CALL k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$					
Status Affected:	None					
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.					

COMF	Complement f						
Syntax:	[label] COMF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	$(\overline{f}) \rightarrow (destination)$						
Status Affected:	Z						
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.						

CLRF	Clear f						
Syntax:	[label] CLRF f						
Operands:	$0 \leq f \leq 127$						
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{(f)} \\ 1 \rightarrow \text{Z} \end{array}$						
Status Affected:	Z						
Description:	The contents of register 'f' are cleared and the Z bit is set.						

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{(W)} \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f						
Syntax:	[label] DECF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) - 1 \rightarrow (destination)						
Status Affected:	Z						
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

16.1 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC12F609/615/617	2.0	—	5.5	V	Fosc < = 4 MHz		
D001		PIC12HV609/615	2.0	—	(2)	V	Fosc < = 4 MHz		
D001B		PIC12F609/615/617	2.0	—	5.5	V	Fosc < = 8 MHz		
D001B		PIC12HV609/615	2.0	—	(2)	V	Fosc < = 8 MHz		
D001C		PIC12F609/615/617	3.0	—	5.5	V	Fosc < = 10 MHz		
D001C		PIC12HV609/615	3.0	—	(2)	V	Fosc < = 10 MHz		
D001D		PIC12F609/615/617	4.5	—	5.5	V	Fosc < = 20 MHz		
D001D		PIC12HV609/615	4.5	—	(2)	V	Fosc < = 20 MHz		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—		V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 12.3.1 "Power-on Reset (POR)" for details.		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See Section 12.3.1 "Power-on Reset (POR)" for details.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: User defined. Voltage across the shunt regulator should not exceed 5V.

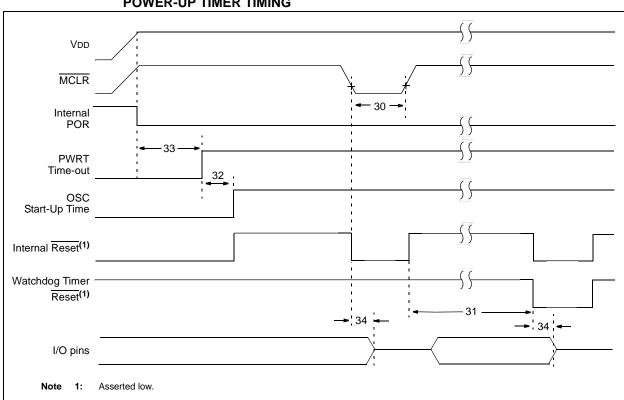
16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS						nless otherwise stated) ≤ TA ≤ +85°C for industrial ≤ TA ≤ +125°C for extended		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	VIL	Input Low Voltage						
		I/O port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 Vdd	V	(NOTE 1)	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V		
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V		
	Viн	Input High Voltage						
		I/O ports:		_				
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \leq V \text{DD} \leq 5.5 \text{V}$	
D042		MCLR	0.8 Vdd	—	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(NOTE 1)	
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	_	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		GP3/MCLR ^(3,4)	—	±0.7	± 5	μΑ	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$	
D063		OSC1	_	± 0.1	± 5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	IPUR	GPIO Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D080		I/O ports	—	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage	VDD - 0.7	—	—	V	IOH = -2.5mA, VDD = 4.5V, -40°С to +125°С	
D090		I/O ports ⁽²⁾	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	

* These parameters are characterized but not tested.

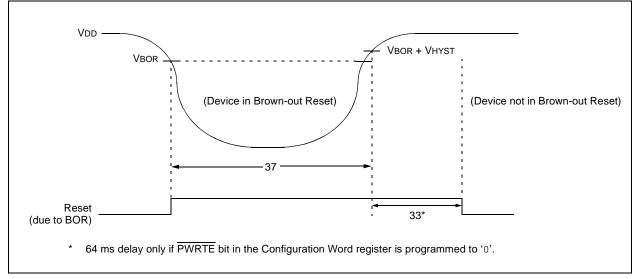
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.


2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.

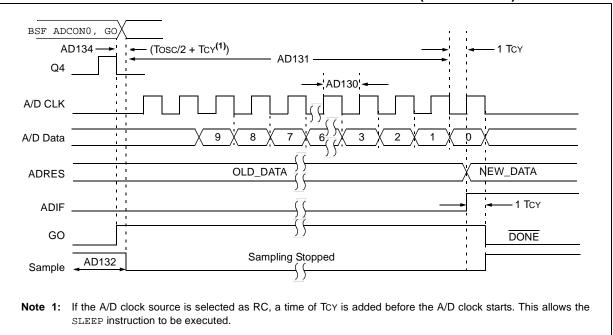

5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

6: Applies to PIC12F617 only.

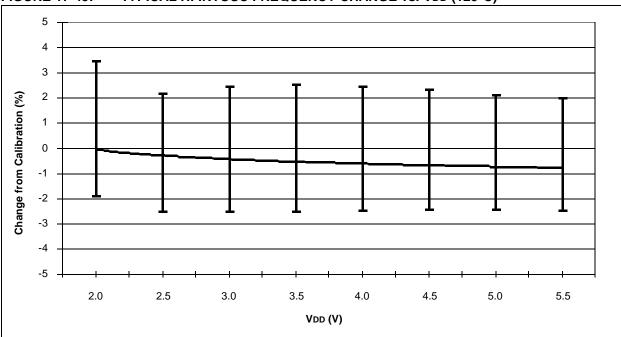
FIGURE 16-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 16-11: PIC12F615/617/HV615 A/D CONVERTER (ADC) CHARACTERISTICS:

	-	rating Conditions (unless perature $-40^{\circ}C \le TA \le -40^{\circ}C$		vise stated	d)		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
AD01	Nr	Resolution	_	_	10 bits	bit	
AD02	EIL	Integral Error	—	_	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD03	Edl	Differential Error	_	—	±1	LSb	No missing codes to 10 bits VREF = 5.12V ⁽⁵⁾
AD04	EOFF	Offset Error		+1.5	+2.0	LSb	Vref = 5.12V ⁽⁵⁾
AD07	Egn	Gain Error		_	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	_	— Vdd	V	Absolute minimum to ensure 1 LSb accuracy
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ	
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN.
					50	μA	During A/D conversion cycle.


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: VREF = 5V for PIC12HV615.

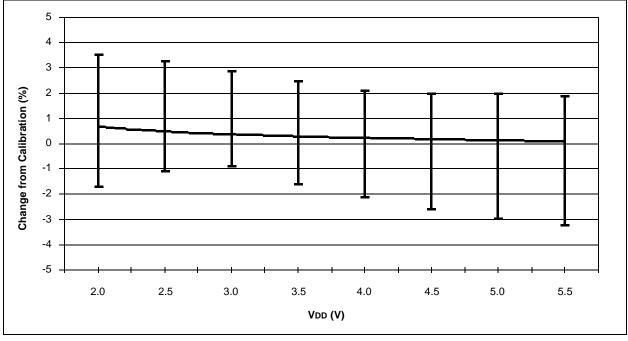


FIGURE 16-11: PIC12F615/617/HV615 A/D CONVERSION TIMING (SLEEP MODE)

FIGURE 17-45: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)

S

Shoot-through Current	104
Power-Down Mode	
Wake-up	
Wake-up using Interrupts	
Software Simulator (MPLAB SIM)	140
Special Event Trigger	
Special Function Registers	
STATUS Register	18

Т

T1CON Register	
T2CON Register	
Thermal Considerations	
Time-out Sequence	
Timer0	
Associated Registers	
External Clock	
Interrupt	
Operation	
Specifications	
ТОСКІ	54
Timer1	-
Associated registers	63
Asynchronous Counter Mode	59
Reading and Writing	59
Comparator Synchronization	61
ECCP Special Event Trigger	
(PIC12F615/617/HV615 Only)	61
ECCP Time Base (PIC12F615/617/HV615 Only)	60
Interrupt	60
Modes of Operation	57
Operation During Sleep	60
Oscillator	
Prescaler	59
Specifications	161
Timer1 Gate	
Inverting Gate	60
Selecting Source	
Synchronizing COUT w/Timer1	
TMR1H Register	
TMR1L Register	

Timer2 (PIC12F615/617/HV615 Only)	
Associated registers	66
Timers	
Timer1	
T1CON	62
Timer2	
T2CON	
Timing Diagrams	
A/D Conversion	165
A/D Conversion (Sleep Mode)	166
Brown-out Reset (BOR)	159
Brown-out Reset Situations	112
CLKOUT and I/O	158
Clock Timing	
Comparator Output	
Enhanced Capture/Compare/PWM (ECCP)	
Half-Bridge PWM Output	
INT Pin Interrupt	
PWM Auto-shutdown	
Auto-restart Enabled	103
Firmware Restart	103
PWM Output (Active-High)	
PWM Output (Active-Low)	
Reset, WDT, OST and Power-up Timer	
Time-out Sequence	
Case 1	114
Case 2	114
Case 3	
Timer0 and Timer1 External Clock	161
Timer1 Incrementing Edge	
Wake-up from Interrupt	
Timing Parameter Symbology	
TRISIO	
TRISIO Register	

V

Voltage Reference (VR) Specifications	163
Voltage Reference. See Comparator Voltage	
Reference (CVREF)	
Voltage References	
Associated registers	78
VP6 Stabilization	74
VREF. SEE ADC Reference Voltage	

W

Wake-up Using Interrupts	123
Watchdog Timer (WDT)	
Associated registers	
Specifications	
WPU Register	46
Writing the Flash Program Memory	32
WWW Address	209
WWW, On-Line Support	6