
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

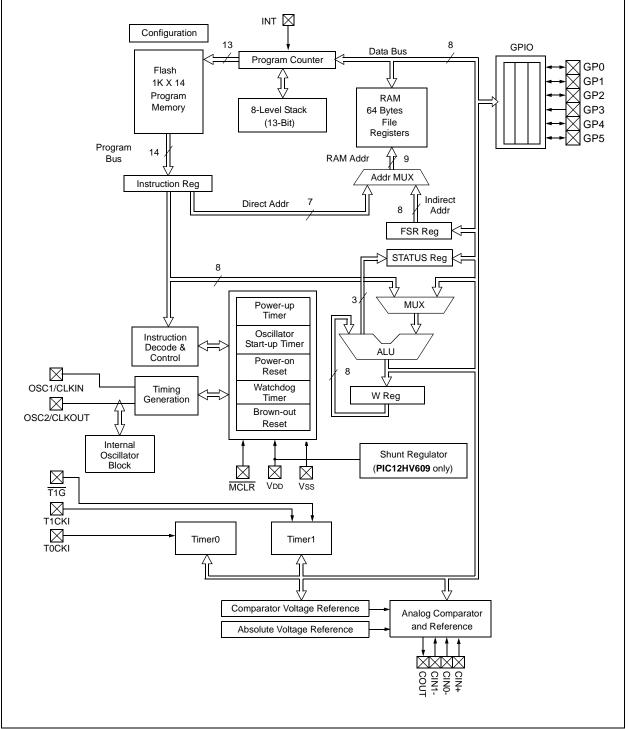
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

The PIC12F609/615/617/12HV609/615 devices are covered by this data sheet. They are available in 8-pin PDIP, SOIC, MSOP and DFN packages.

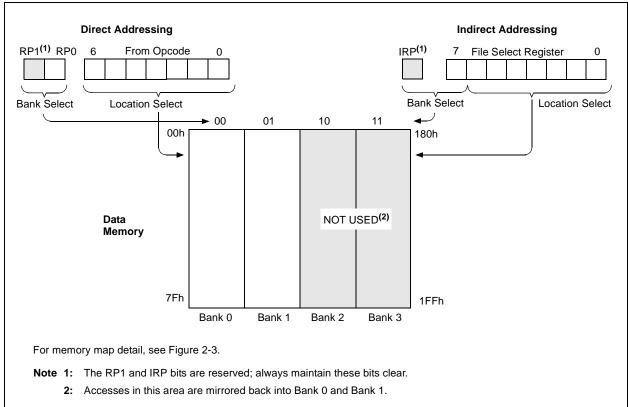
Block Diagrams and pinout descriptions of the devices are as follows:

- PIC12F609/HV609 (Figure 1-1, Table 1-1)
- PIC12F615/617/HV615 (Figure 1-2, Table 1-2)

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC12F609/615/12HV609/615, and as 128×8 in the PIC12F617. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS


The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-3:

DATA MEMORY MAP OF THE PIC12F609/HV609

	THE	PIC12F609/HV	609
	File Address		File Address
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	IOC	96h
	17h		97h
	18h		98h
VRCON	19h		99h
CMCON0	1Ah		9Ah
-	1Bh		9Bh
CMCON1	1Ch		9Ch
	1Dh		9Dh
	1Eh		9Eh
	1Fh	ANSEL	9Fh
	20h		A0h
	3Fh		
General Purpose Registers	40h		
64 Bytes	6Fh Z0h		EFh F0h
Accesses 70h-7Fh	70h 7Fh	Accesses 70h-7Fh	FUN
Bank 0		Bank 1	
	ata memor iysical regi	y locations, read as '0 ster.	·

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING PIC12F609/615/617/12HV609/615

REGISTER 5-2: TRISIO: GPIO TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0
bit 7			•				bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	wn

bit 7-6 Unimplemented: Read as '0'

TRISIO<5:0>: GPIO Tri-State Control bit

1 = GPIO pin configured as an input (tri-stated)

0 = GPIO pin configured as an output

Note 1: TRISIO<3> always reads '1'.

bit 5-0

2: TRISIO<5:4> always reads '1' in XT, HS and LP Oscillator modes.

5.2 Additional Pin Functions

Every GPIO pin on the PIC12F609/615/617/12HV609/ 615 has an interrupt-on-change option and a weak pullup option. The next three sections describe these functions.

5.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

5.2.2 WEAK PULL-UPS

Each of the GPIO pins, except GP3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 5-5. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit of the OPTION register). A weak pull-up is automatically enabled for GP3 when configured as MCLR and disabled when GP3 is an I/O. There is no software control of the MCLR pull-up.

5.2.3 INTERRUPT-ON-CHANGE

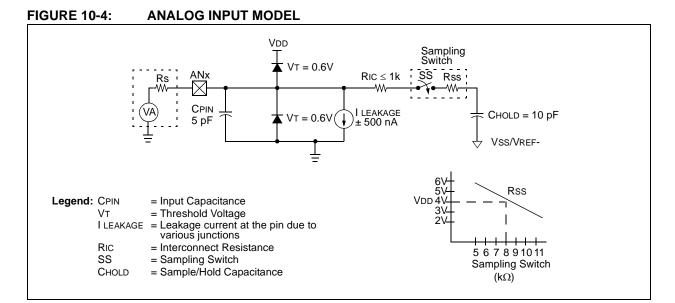
Each GPIO pin is individually configurable as an interrupt-on-change pin. Control bits IOCx enable or disable the interrupt function for each pin. Refer to Register 5-6. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The 'mismatch' outputs of the last read are OR'd together to set the GPIO Change Interrupt Flag bit (GPIF) in the INTCON register (Register 2-3).

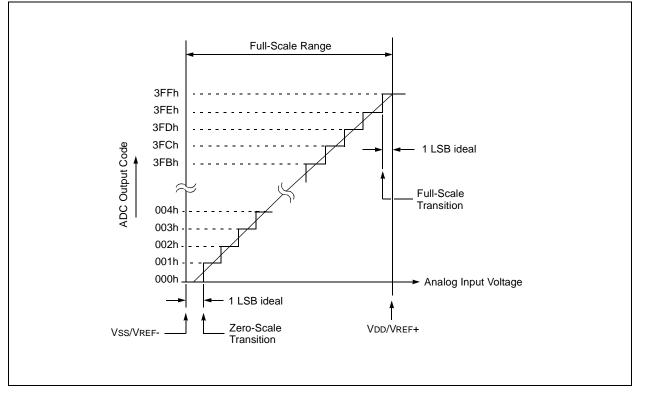
This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- Any read of GPIO AND Clear flag bit GPIF. This will end the mismatch condition;
 OR
- b) Any write of GPIO AND Clear flag bit GPIF will end the mismatch condition;

A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these resets, the GPIF flag will continue to be set if a mismatch is present.


Note:	If a change on the I/O pin should occur					
	when any GPIO operation is being					
	executed, then the GPIF interrupt flag may					
	not get set.					

10.2.7 ADC REGISTER DEFINITIONS


The following registers are used to control the operation of the ADC.

REGISTER 10-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0) R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADFM	1 VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	
bit 7					·		bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 7	ADFM: A/D 1 = Right ju: 0 = Left just		sult Format Se	elect bit				
bit 6		VCFG: Voltage Reference bit 1 = VREF pin						
bit 5	Unimpleme	nted: Read as	'O'					
bit 4-2	000 = Chan 001 = Chan 010 = Chan 011 = Chan 100 = CVRE 101 = 0.6V 110 = 1.2V	Reference						
bit 1	1 = A/D con This bit i	A/D Conversior version cycle in is automatically version comple	progress. Set cleared by ha	rdware when th	ts an A/D con e A/D convers	version cycle. sion has complete	ed.	
bit 0	ADON: ADO 1 = ADC is 0	C Enable bit						
Note 1:	When the CHS< have a transient. momentarily cha	If the Compara	tor module use	es this 0.6V refe				

TABLE 10-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0 ⁽¹⁾	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	00-0 0000
ANSEL	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
ADRESH ^(1,2)	ADRESH ^(1,2) A/D Result Register High Byte								xxxx xxxx	uuuu uuuu
ADRESL ^(1,2)	A/D Resu	ılt Register	Low Byte						xxxx xxxx	uuuu uuuu
GPIO	—	—	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	x0 x000
INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	0000 0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾		CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00- 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00- 0-00
TRISIO	_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: x = unknown, u = unchanged, – = unimplemented read as '0'. Shaded cells are not used for ADC module.

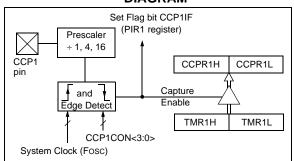
Note 1: For PIC12F615/617/HV615 only.

2: Read Only Register.

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1).

11.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCP1 pin is configured as an output,					
	a write to the port can cause a capture					
	condition.					

FIGURE 11-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode.

11.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 11-1).

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

11.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPR1L
- CCP1CON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver.

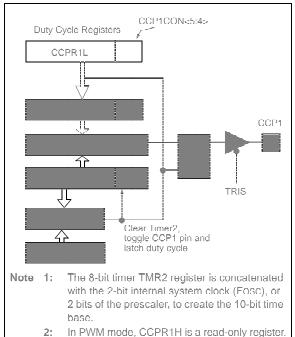

Note:	Clearing	the	CCP1CON	register	will
	relinquish	CCP	1 control of th	ne CCP1	pin.

Figure 11-3 shows a simplified block diagram of PWM operation.

Figure 11-4 shows a typical waveform of the PWM signal.

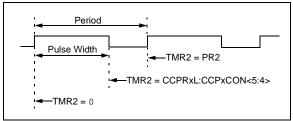

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 11.3.7** "Setup for PWM Operation".

FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 11-4: CCP PWM OUTPUT

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 4.0** "Oscillator Module" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register.
- 5. Configure and start Timer2:
- Clear the TMR2IF interrupt flag bit of the PIR1 register.
- Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
- Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCP1 pin output driver by clearing the associated TRIS bit.

11.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to 10-bits of resolution. It can do this through four different PWM output modes:

- Single PWM
- Half-Bridge PWM

To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

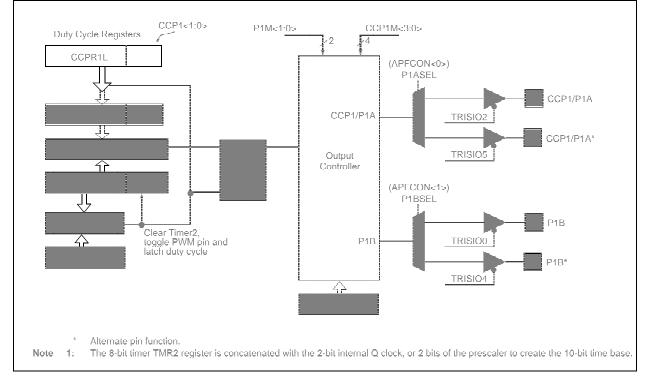

The PWM outputs are multiplexed with I/O pins and are designated P1A and P1B. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 11-6 shows the pin assignments for each Enhanced PWM mode.

Figure 11-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 11-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

Note 1: The TRIS register value for each PWM output must be configured appropriately.

- 2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.
- **3:** Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

TABLE 11-6: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode	P1M<1:0>	CCP1/P1A	P1B
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes

TABLE 12-5:	INITIALIZATION CONDITION FOR REGISTERS (PIC12F615/617/HV615)
-------------	--

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	—	xxxx xxxx	uuuu uuuu	սսսս սսսս
INDF	00h/80h	XXXX XXXX	XXXX XXXX	uuuu uuuu
TMR0	01h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
GPIO	05h	x0 x000	u0 u000	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 0000	uuuu uuuu ⁽²⁾
PIR1	0Ch	-000 0-00	-000 0-00	-uuu u-uu (2)
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	0Fh	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 0000	uuuu uuuu	-uuu uuuu
TMR2 ⁽¹⁾	11h	0000 0000	0000 0000	uuuu uuuu
T2CON ⁽¹⁾	12h	-000 0000	-000 0000	-uuu uuuu
CCPR1L ⁽¹⁾	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H ⁽¹⁾	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON ⁽¹⁾	15h	0-00 0000	0-00 0000	u-uu uuuu
PWM1CON ⁽¹⁾	16h	0000 0000	0000 0000	uuuu uuuu
ECCPAS ⁽¹⁾	17h	0000 0000	0000 0000	uuuu uuuu
VRCON	19h	0-00 0000	0-00 0000	u-uu uuuu
CMCON0	1Ah	0000 -0-0	0000 -0-0	uuuu -u-u
CMCON1	1Ch	0 0-10	0 0-10	u u-qu
ADRESH ⁽¹⁾	1Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0 ⁽¹⁾	1Fh	00-0 0000	00-0 0000	uu-u uuuu
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
TRISIO	85h	11 1111	11 1111	uu uuuu
PIE1	8Ch	-00-0-00	-00-0-00	-uu- u-uu
PCON	8Eh	0x	(1, 5)	uu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
PR2	92h	1111 1111	1111 1111	1111 1111
APFCON	93h	000	000	uuu
WPU	95h	11 -111	11 -111	uu -uuu
IOC	96h	00 0000	00 0000	uu uuuu
PMCON1 ⁽⁶⁾	98h	000	000	uuu
PMCON2 ⁽⁶⁾	99h			
PMADRL ⁽⁶⁾	9Ah	0000 0000	0000 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

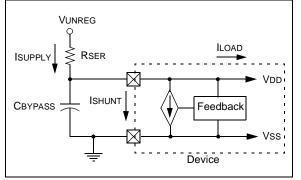
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 12-6 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: For PIC12F617 only.


13.0 VOLTAGE REGULATOR

The PIC12HV609/HV615 devices include a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD).

13.1 Regulator Operation

A shunt regulator generates a specific supply voltage by creating a voltage drop across a pass resistor RSER. The voltage at the VDD pin of the microcontroller is monitored and compared to an internal voltage reference. The current through the resistor is then adjusted, based on the result of the comparison, to produce a voltage drop equal to the difference between the supply voltage VUNREG and the VDD of the microcontroller. See Figure 13-1 for voltage regulator schematic.

An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 13-1.

EQUATION 13-1: RSER LIMITING RESISTOR

$$RMAX = \frac{(VUMIN - 5V)}{1.05 \cdot (4 MA + ILOAD)}$$

$$RMIN = \frac{(VUMAX - 5V)}{0.95 \cdot (50 \text{ MA})}$$

Where:

RMAX = maximum value of RSER (ohms)

RMIN = minimum value of RSER (ohms)

VUMIN = minimum value of VUNREG

VUMAX = maximum value of VUNREG

VDD = regulated voltage (5V nominal)

- ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD.
- 1.05 = compensation for +5% tolerance of RSER
- 0.95 = compensation for -5% tolerance of RSER

13.2 Regulator Considerations

The supply voltage VUNREG and load current are not constant. Therefore, the current range of the regulator is limited. Selecting a value for RSER must take these three factors into consideration.

Since the regulator uses the band gap voltage as the regulated voltage reference, this voltage reference is permanently enabled in the PIC12HV609/HV615 devices.

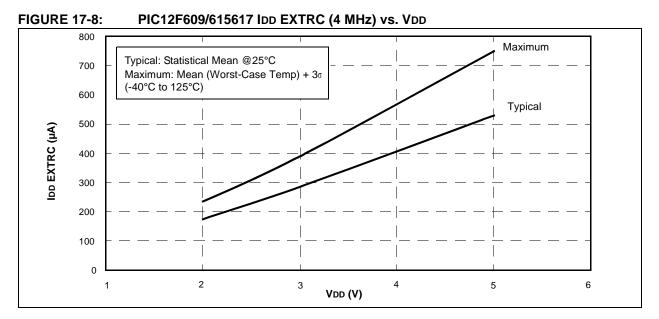
The shunt regulator will still consume current when below operating voltage range for the shunt regulator.

13.3 Design Considerations

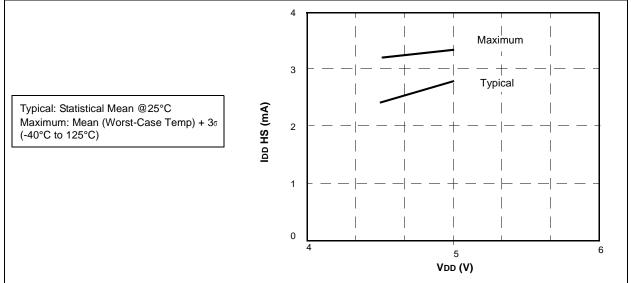
For more information on using the shunt regulator and managing current load, see Application Note AN1035, "*Designing with HV Microcontrollers*" (DS01035).

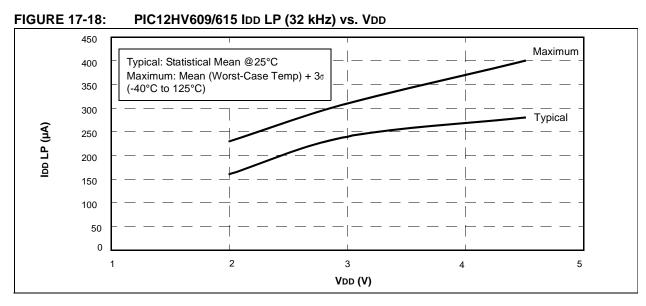
DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param Device Characteristics		Min	Typ†	Max	Units	Conditions			
No.			.761	max	••••••	Vdd	Note		
D020E	Power-down Base Current (IPD) ^(2,3) PIC12HV609/615	-	135	200	μΑ	2.0	WDT, BOR, Comparator, VREF and		
		_	210	280	μA	3.0	T1OSC disabled		
		_	260	350	μA	4.5	1		
D021E		_	135	200	μA	2.0	WDT Current ⁽¹⁾		
		_	210	285	μA	3.0	1		
		_	265	360	μA	4.5	1		
D022E		_	215	285	μA	3.0	BOR Current ⁽¹⁾		
		_	265	360	μA	4.5	7		
D023E		—	185	280	μA	2.0	Comparator Current ⁽¹⁾ , single		
		_	265	360	μΑ	3.0	comparator enabled		
		_	320	430	μA	4.5			
D024E		_	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	255	330	μA	3.0	7		
		_	330	430	μΑ	4.5	1		
D025E*		—	175	245	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
		—	275	350	μΑ	3.0			
		—	355	450	μΑ	4.5			
D026E		—	140	205	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
		_	220	290	μΑ	3.0			
		—	270	360	μA	4.5			
D027E		—	210	280	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
		_	260	350	μA	4.5	progress		

16.7 DC Characteristics: PIC12HV609/615-E (Extended)

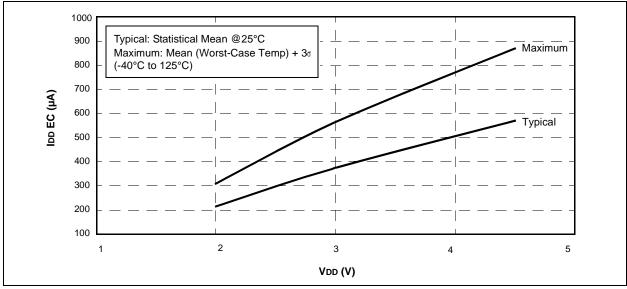

* These parameters are characterized but not tested.

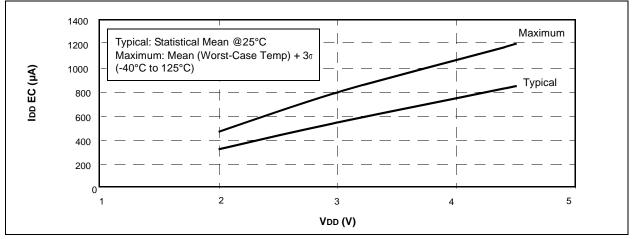
† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

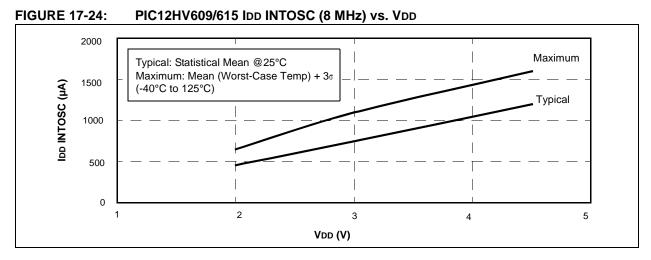

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

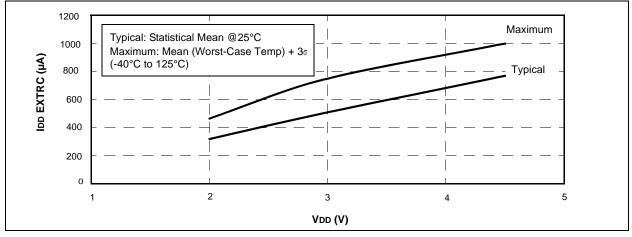

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

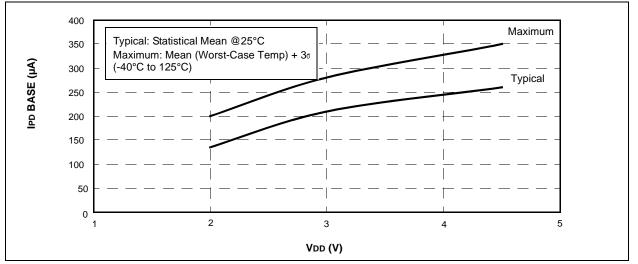
3: Shunt regulator is always on and always draws operating current.

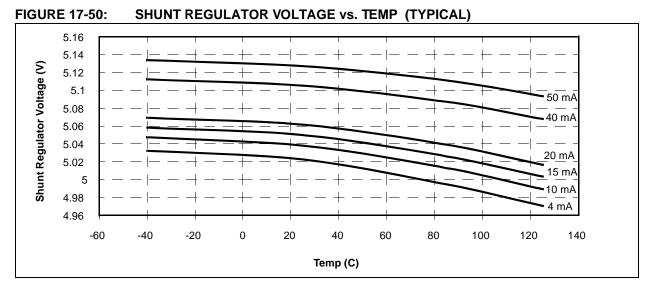


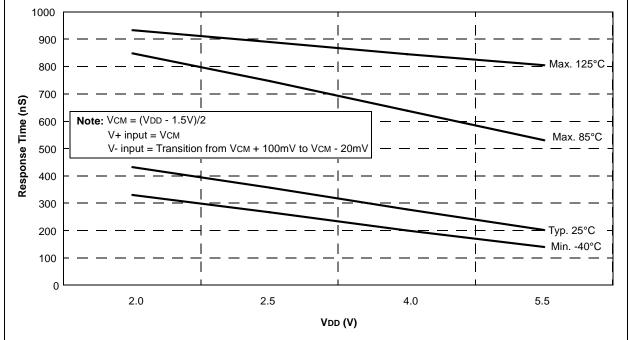


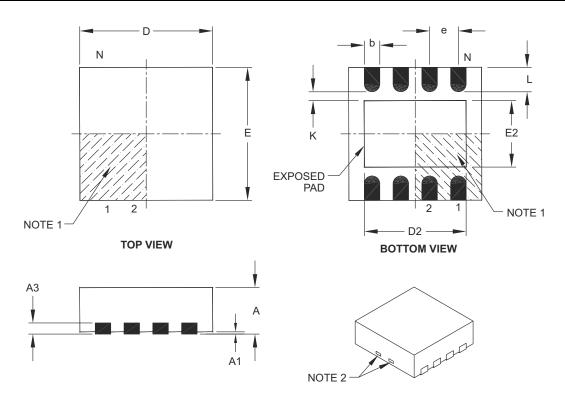












8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е	0.80 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	4.00 BSC			
Exposed Pad Width	E2	0.00	2.20	2.80	
Overall Width		4.00 BSC			
Exposed Pad Length	D2	0.00	3.00	3.60	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad		0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-131D

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
Fror	n: Name							
	Company							
	Telephone: ()	FAX: ()						
Application (optional):								
Would you like a reply?YN								
Dev	ice: PIC12F609/615/617/12HV609/615	Literature Number: DS41302D						
Questions:								
1.	What are the best features of this documen	t?						
2.	2. How does this document meet your hardware and software development needs?							
3.	Do you find the organization of this document easy to follow? If not, why?							
4	What additions to the document do you thin	k would enhance the structure and subject?						
ч.	What additions to the document do you think would enhance the structure and subject?							
5.	What deletions from the document could be	e made without affecting the overall usefulness?						
6.	Is there any incorrect or misleading information (what and where)?							
7.	How would you improve this document?							