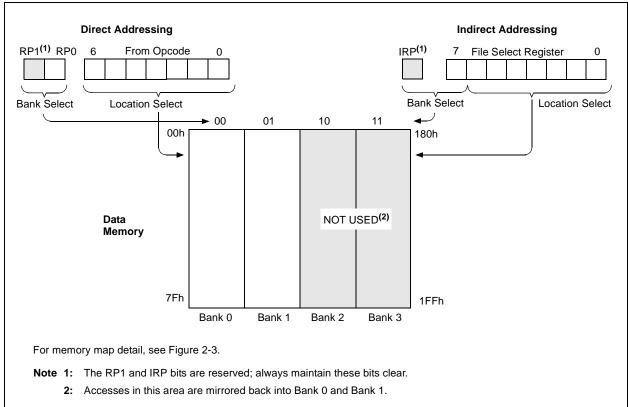
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-i-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING PIC12F609/615/617/12HV609/615

REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMDATL7	PMDATL7 PMDATL6 PM		PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

-n = Value at POR

PMDATL<7:0>: 8 Least Significant Address bits to Write or Read from Program Memory

REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

bit 7-0 **PMADRL<7:0>**: 8 Least Significant Address bits for Program Memory Read/Write Operation

REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			PMDATH4	PMDATH3	PMDATH2	PMDATH1	PMDATH0
bit 7							bit 0

Legend:			
R = Readable bit	'0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDATH<5:0>: 6 Most Significant Data bits from Program Memory

'1' = Bit is set

REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	—	—	—	_	PMADRH2	PMADRH1	PMADRH0			
bit 7 bit 0										
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit					ented bit, read as	'0'				
				'0' = Bit is cleared x = Bit is unk						

bit 3 Unimplemented: Read as '0'

bit 2-0 **PMADRH<2:0>**: Specifies the 3 Most Significant Address bits or high bits for program memory reads.

x = Bit is unknown

4.2 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
- Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two selectable clock frequencies: 4 MHz and 8 MHz

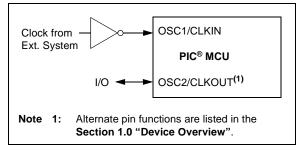
The system clock can be selected between external or internal clock sources via the FOSC<2:0> bits of the Configuration Word register.

4.3 External Clock Modes

4.3.1 OSCILLATOR START-UP TIMER (OST)

If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 4-1.

Switch From	From Switch To Frequen		Oscillator Delay
Sleep/POR	INTOSC	125 kHz to 8 MHz	Oscillator Warm-Up Delay (TWARM)
Sleep/POR	EC, RC	DC – 20 MHz	2 instruction cycles
Sleep/POR	LP, XT, HS	32 kHz to 20 MHz	1024 Clock Cycles (OST)


TABLE 4-1: OSCILLATOR DELAY EXAMPLES

4.3.2 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 4-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION

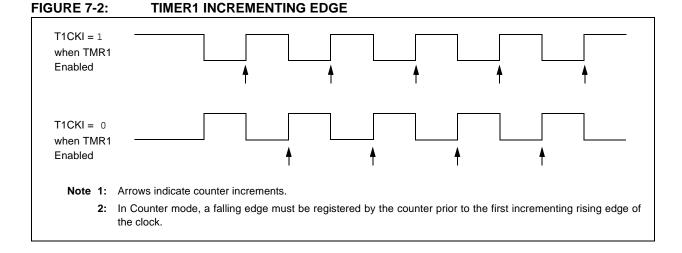
7.10 **ECCP Special Event Trigger** (PIC12F615/617/HV615 only)

If a ECCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The ECCP module may still be configured to generate a ECCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

Timer1 should be synchronized to the Fosc to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the ECCP, the write will take precedence.


For more information, see Section 11.0 "Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)".

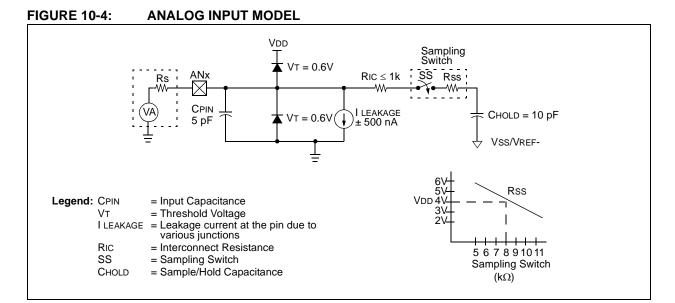
7.11 **Comparator Synchronization**

The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module.

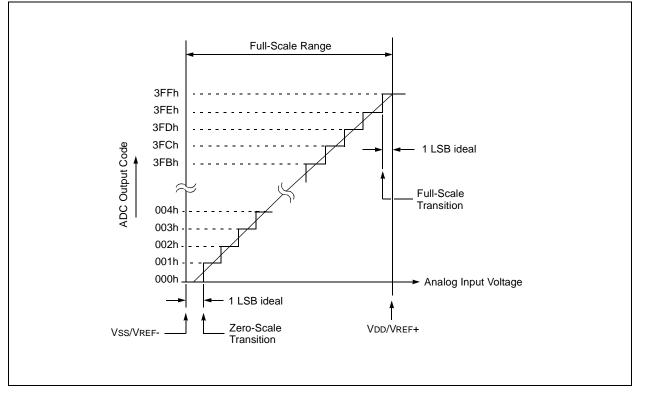
When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes.

For more information, see Section 9.0 "Comparator Module".

NOTES:


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0						
oit 7							bit						
Legend:													
R = Readab		W = Writable		-	nented bit, rea	d as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown						
oit 7	Unimplemen	ted: Read as '	0'										
oit 6-3	TOUTPS<3:0	TOUTPS<3:0>: Timer2 Output Postscaler Select bits											
	0000 =1:1 Po												
		0001 =1:2 Postscaler											
		0010 =1:3 Postscaler 0011 =1:4 Postscaler											
		0100 =1:5 Postscaler											
	0100 = 1.5 PC												
		0110 =1:7 Postscaler											
		0111 =1:8 Postscaler											
	1000 =1:9 Po	1000 =1:9 Postscaler											
	1001 =1:10 F	1001 =1:10 Postscaler											
		1010 =1:11 Postscaler											
	1011 =1:12 F												
	1100 =1:13 F												
	1101 =1:14 F 1110 =1:15 F												
	1110 =1:15 F												
oit 2	TMR2ON: Tir												
511 2													
		1 = Timer2 is on 0 = Timer2 is off											
oit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits									
	00 =Prescale	eris 1											
	01 =Prescale												
	1x =Prescaler is 16												

REGISTER 8-1: T2CON: TIMER 2 CONTROL REGISTER


TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000	
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00-0-00	
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00-0-00	
PR2 ⁽¹⁾	Timer2 M	lodule Period	Register						1111 1111	1111 1111	
TMR2 ⁽¹⁾	Holding F	Register for the	e 8-bit TMR2	Register					0000 0000	0000 0000	
T2CON ⁽¹⁾	—	TOUTPS3	TOUTPS2	TOUTPS1	TPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0					-000 0000	
Lanandi											

Legend:x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.Note1:For PIC12F615/617/HV615 only.

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR PIC12F609/615/HV609/615 ONLY

U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	_	_	_	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	IOSCFS	CP ⁽²⁾	MCLRE ⁽³⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC
oit 13	3							I					bit
000	ndu												
Lege R = F	Readat	ole bit		W = Writable	e bit	P = Prog	rammab	le		U = Uni	mplement	ed bit, re	ad as '0'
-n = \	Value a	at POR		'1' = Bit is se	et	'0' = Bit is	s cleared	ł		x = Bit i	s unknow	n	
bit 13	8-10	Un	implen	nented: Read	as '1'								
bit 9-			•	I:0>: Brown-o		ction hits(1)						
Sit 0	0			enabled									
				enabled durir	ig operation a	and disable	ed in Sle	ер					
				disabled									
bit 7				Internal Oscilla	ator Frequence	cy Select b	it						
			= 8 MHz = 4 MHz										
h:+ C		-		Protection bit	(2)								
bit 6				am memory co		ic dicabla	d						
			•	am memory co	•								
bit 5			°_	ICLR Pin Fun	•	(-)							
				pin function is									
				pin function is		MCLR inte	ernally tie	ed to VDD					
bit 4		PW	RTE: P	ower-up Time	r Enable bit								
		1 =	PWRT	disabled									
		0 =	PWRT	enabled									
bit 3		WD	DTE: Wa	atchdog Timer	Enable bit								
			WDT e										
			WDT d										
bit 2-	0			>: Oscillator S		0040	000/01						
				scillator: CLK() oscillator: I/C									
				SC oscillator: (IIN		
				5/OSC1/CLK					.,				
		100		SCIO oscillat 5/OSC1/CLK		on on GP4	/OSC2/0	CLKOUT pin	, I/O functi	on on			
		011		O function on		CI KOUT n	in. CI K	IN on GP5/C	DSC1/CLK	IN			
				scillator: High-							C1/CLKIN		
		001	= XT o	scillator: Crys	tal/resonator	on GP4/O	SC2/CLI	KOUT and G	GP5/OSC1	/CLKIN			
		000	= LP o	scillator: Low-	power crystal	on GP4/C	SC2/CL	KOUT and	GP5/OSC	1/CLKIN			
Note	1.	Enabli	na Brow	n-out Reset d	nes not autor	natically o	nahla D/	wor-un Tim	or				
NOLE	2:		0	gram memory		-		•					
				J			P						

3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

12.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired.
- OST is activated after the PWRT time-out has expired.

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC12F609/615/617/12HV609/615 device operating in parallel.

Table 12-6 shows the Reset conditions for some special registers, while Table 12-5 shows the Reset conditions for all the registers.

12.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 12.3.4 "Brown-out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	ut Reset	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition			
0	х	1	1	Power-on Reset			
u	0	1	1	Brown-out Reset			
u	u	0	u	WDT Reset			
u	u	0	0	WDT Wake-up			
u	u	u	u	MCLR Reset during normal operation			
u	u	1	0	MCLR Reset during Sleep			

Legend: u = unchanged, x = unknown

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
PCON		_	_	_		_	POR	BOR	dd	uu
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

TABLE 12-5:	INITIALIZATION CONDITION FOR REGISTERS (PIC12F615/617/HV615)
-------------	--

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out		
W		xxxx xxxx	uuuu uuuu	սսսս սսսս		
INDF	00h/80h	XXXX XXXX	xxxx xxxx	uuuu uuuu		
TMR0	01h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾		
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾		
FSR	04h/84h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
GPIO	05h	x0 x000	u0 u000	uu uuuu		
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu		
INTCON	0Bh/8Bh	0000 0000	0000 0000	uuuu uuuu ⁽²⁾		
PIR1	0Ch	-000 0-00	-000 0-00	-uuu u-uu (2)		
TMR1L	0Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս		
TMR1H	0Fh	xxxx xxxx	uuuu uuuu	սսսս սսսս		
T1CON	10h	0000 0000	uuuu uuuu	-uuu uuuu		
TMR2 ⁽¹⁾	11h	0000 0000	0000 0000	uuuu uuuu		
T2CON ⁽¹⁾	12h	-000 0000	-000 0000	-uuu uuuu		
CCPR1L ⁽¹⁾	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCPR1H ⁽¹⁾	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCP1CON ⁽¹⁾	15h	0-00 0000	0-00 0000	u-uu uuuu		
PWM1CON ⁽¹⁾	16h	0000 0000	0000 0000	uuuu uuuu		
ECCPAS ⁽¹⁾	17h	0000 0000	0000 0000	uuuu uuuu		
VRCON	19h	0-00 0000	0-00 0000	u-uu uuuu		
CMCON0	1Ah	0000 -0-0	0000 -0-0	uuuu -u-u		
CMCON1	1Ch	0 0-10	0 0-10	u u-qu		
ADRESH ⁽¹⁾	1Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս		
ADCON0 ⁽¹⁾	1Fh	00-0 0000	00-0 0000	uu-u uuuu		
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu		
TRISIO	85h	11 1111	11 1111	uu uuuu		
PIE1	8Ch	-00-0-00	-00-0-00	-uu- u-uu		
PCON	8Eh	0x	(1, 5)			
OSCTUNE	90h	0 0000	u uuuu	u uuuu		
PR2	92h	1111 1111	1111 1111	1111 1111		
APFCON	93h	000	000	uuu		
WPU	95h	11 -111	11 -111	uu -uuu		
IOC	96h	00 0000	00 0000	uu uuuu		
PMCON1 ⁽⁶⁾	98h	000	000	uuu		
PMCON2 ⁽⁶⁾	99h					
PMADRL ⁽⁶⁾	9Ah	0000 0000	0000 0000	սսսս սսսս		

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

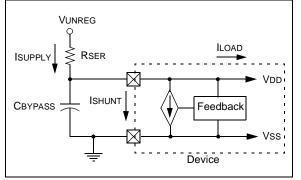
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 12-6 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: For PIC12F617 only.


13.0 VOLTAGE REGULATOR

The PIC12HV609/HV615 devices include a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD).

13.1 Regulator Operation

A shunt regulator generates a specific supply voltage by creating a voltage drop across a pass resistor RSER. The voltage at the VDD pin of the microcontroller is monitored and compared to an internal voltage reference. The current through the resistor is then adjusted, based on the result of the comparison, to produce a voltage drop equal to the difference between the supply voltage VUNREG and the VDD of the microcontroller. See Figure 13-1 for voltage regulator schematic.

An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 13-1.

EQUATION 13-1: RSER LIMITING RESISTOR

$$RMAX = \frac{(VUMIN - 5V)}{1.05 \cdot (4 MA + ILOAD)}$$

$$RMIN = \frac{(VUMAX - 5V)}{0.95 \cdot (50 \text{ MA})}$$

Where:

RMAX = maximum value of RSER (ohms)

RMIN = minimum value of RSER (ohms)

VUMIN = minimum value of VUNREG

VUMAX = maximum value of VUNREG

VDD = regulated voltage (5V nominal)

- ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD.
- 1.05 = compensation for +5% tolerance of RSER
- 0.95 = compensation for -5% tolerance of RSER

13.2 Regulator Considerations

The supply voltage VUNREG and load current are not constant. Therefore, the current range of the regulator is limited. Selecting a value for RSER must take these three factors into consideration.

Since the regulator uses the band gap voltage as the regulated voltage reference, this voltage reference is permanently enabled in the PIC12HV609/HV615 devices.

The shunt regulator will still consume current when below operating voltage range for the shunt regulator.

13.3 Design Considerations

For more information on using the shunt regulator and managing current load, see Application Note AN1035, "*Designing with HV Microcontrollers*" (DS01035).

NOTES:

16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

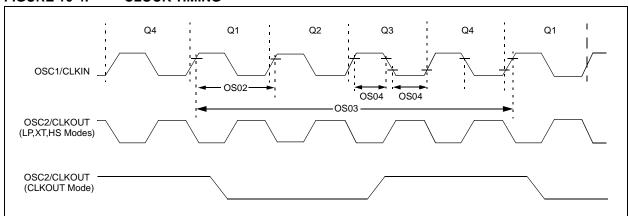
DC CHARACTERISTICS			Standard Operat Operating temper	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	VIL	Input Low Voltage						
		I/O port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 Vdd	V	(NOTE 1)	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V		
D033A		OSC1 (HS mode)	Vss	—	0.3 VDD	V		
	VIH	Input High Voltage						
		I/O ports:		_				
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \leq V \text{DD} \leq 5.5 \text{V}$	
D042		MCLR	0.8 Vdd	—	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(NOTE 1)	
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	_	± 0.1	± 1	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		GP3/MCLR ^(3,4)	—	±0.7	±5	μΑ	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$	
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	IPUR	GPIO Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D080		I/O ports	_	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage	Vdd - 0.7	—	—	V	IOH = -2.5mA, VDD = 4.5V, -40°С to +125°С	
D090		I/O ports ⁽²⁾	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

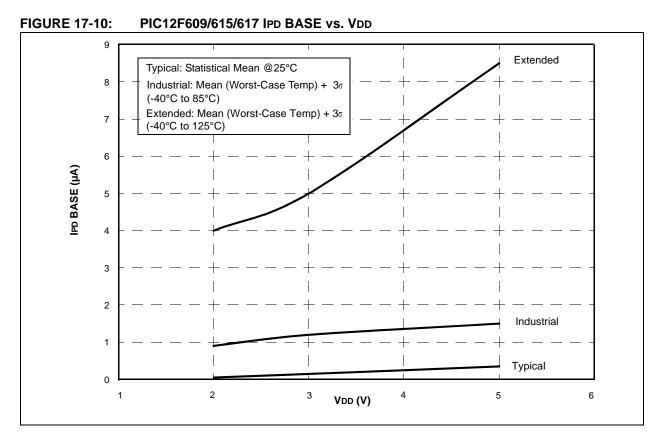
4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.

5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

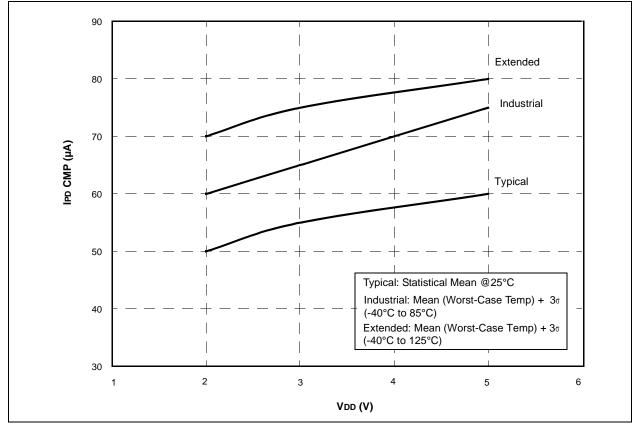
6: Applies to PIC12F617 only.

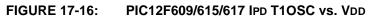
16.11 AC Characteristics: PIC12F609/615/617/12HV609/615 (Industrial, Extended)

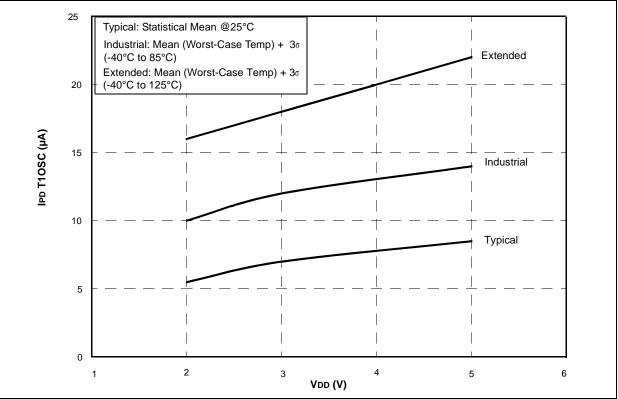
FIGURE 16-4: CLOCK TIMING

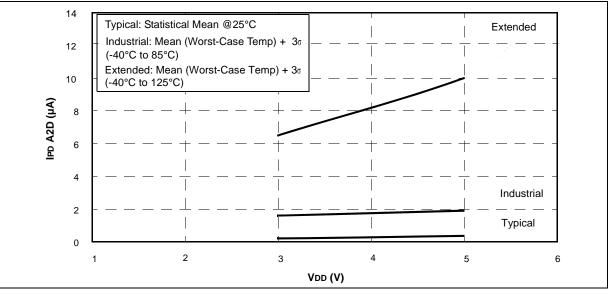

TABLE 16-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

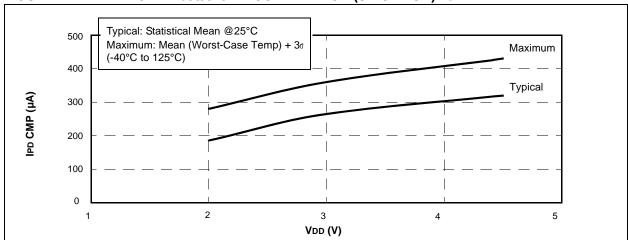
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode	
			DC	—	4	MHz	XT Oscillator mode	
			DC	_	20	MHz	HS Oscillator mode	
			DC	—	20	MHz	EC Oscillator mode	
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode	
			0.1	_	4	MHz	XT Oscillator mode	
			1	—	20	MHz	HS Oscillator mode	
			DC	—	4	MHz	RC Oscillator mode	
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Oscillator mode	
			250	—	×	ns	XT Oscillator mode	
			50	—	×	ns	HS Oscillator mode	
			50	—	∞	ns	EC Oscillator mode	
		Oscillator Period ⁽¹⁾	—	30.5	—	μS	LP Oscillator mode	
			250	—	10,000	ns	XT Oscillator mode	
			50	_	1,000	ns	HS Oscillator mode	
			250	—	—	ns	RC Oscillator mode	
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc	
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator	
	TosL	External CLKIN Low	100	-	—	ns	XT oscillator	
			20	—		ns	HS oscillator	
OS05*	TosR,	External CLKIN Rise,	0	—	~	ns	LP oscillator	
	TosF	External CLKIN Fall	0	-	∞	ns	XT oscillator	
			0		×	ns	HS oscillator	

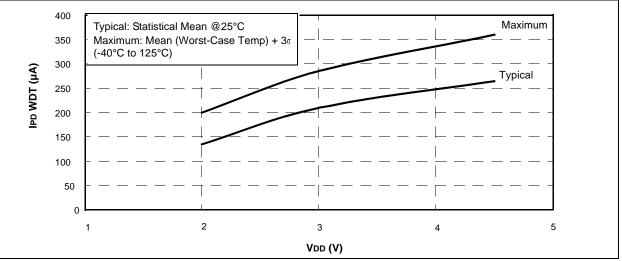

* These parameters are characterized but not tested.

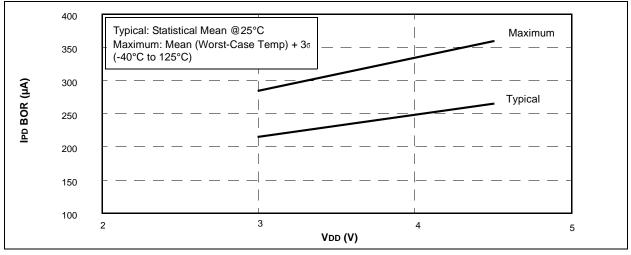

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

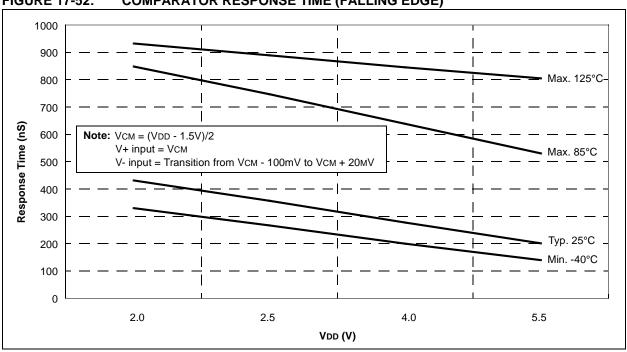

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.










FIGURE 17-27: PIC12HV609/615 IPD COMPARATOR (SINGLE ON) vs. VDD

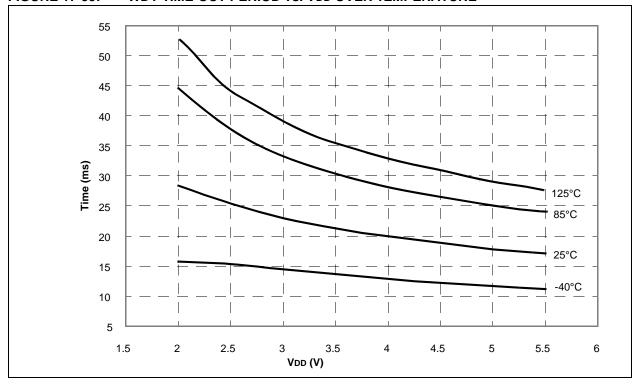
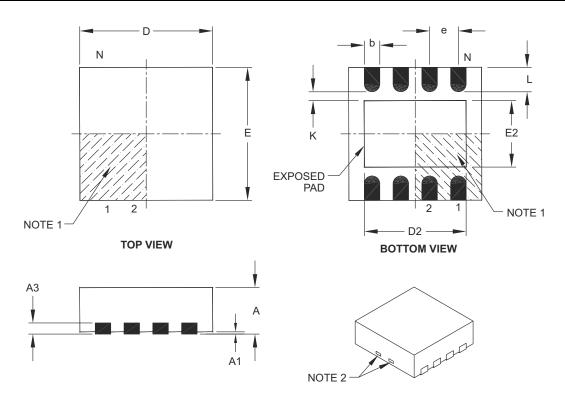



FIGURE 17-52: COMPARATOR RESPONSE TIME (FALLING EDGE)

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

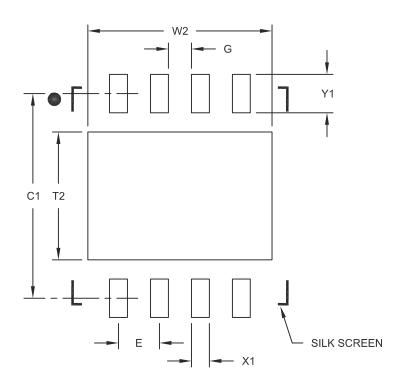
	Units						
Dimensio	Dimension Limits						
Number of Pins	Ν	8					
Pitch	е		0.80 BSC				
Overall Height	А	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Length		4.00 BSC					
Exposed Pad Width	E2	0.00	2.20	2.80			
Overall Width	E	4.00 BSC					
Exposed Pad Length	D2	0.00	3.00	3.60			
Contact Width	b	0.25	0.30	0.35			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-131D

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E		0.80 BSC			
Optional Center Pad Width	W2			3.60		
Optional Center Pad Length	T2			2.50		
Contact Pad Spacing	C1		4.00			
Contact Pad Width (X8)	X1			0.35		
Contact Pad Length (X8)	Y1			0.75		
Distance Between Pads	G	0.45				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2131B