

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN)

TABLE 2: PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Analog	Comparator s	Timer	ССР	Interrupts	Pull-ups	Basic
GP0	7	AN0	CIN+	—	P1B	IOC	Y	ICSPDAT
GP1	6	AN1	CIN0-		—	IOC	Y	ICSPCLK/VREF
GP2	5	AN2	COUT	T0CKI	CCP1/P1A	INT/IOC	Y	_
GP3 ⁽¹⁾	4		—	T1G*	—	IOC	Y ⁽²⁾	MCLR/VPP
GP4	3	AN3	CIN1-	T1G	P1B*	IOC	Y	OSC2/CLKOUT
GP5	2		_	T1CKI	P1A*	IOC	Y	OSC1/CLKIN
	1		—		—	—	_	Vdd
_	8	_	—	_				Vss

* Alternate pin function.

Note 1: Input only.

2: Only when pin is configured for external MCLR.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 2-1:

the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

STATUS: STATUS REGISTER

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 14.0 "Instruction Set Summary".

- Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F609/615/617/ 12HV609/615 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: This bit is reserved and should be maintained as '0'
bit 6	RP1: This bit is reserved and should be maintained as '0'
bit 5	RP0: Register Bank Select bit (used for direct addressing)
	1 = Bank 1 (80h – FFh)
	0 = Bank 0 (00h - 7Fh)
bit 4	TO: Time-out bit
	 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions), For Borrow, the polarity is reversed.
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions)
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1. F	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the

Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the Note 1: second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | TOIF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt
bit 3	GPIE: GPIO Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt
bit 2	TolF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

4.0 OSCILLATOR MODULE

4.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the Oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured with a choice of two selectable speeds: internal or external system clock source.

The Oscillator module can be configured in one of eight clock modes.

- 3. EC External clock with I/O on OSC2/CLKOUT.
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 6. HS High Gain Crystal or Ceramic Resonator mode.
- 7. RC External Resistor-Capacitor (RC) with FOSC/4 output on OSC2/CLKOUT.
- 8. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 9. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 10. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The Internal Oscillator module provides a selectable system clock mode of either 4 MHz (Postscaler) or 8 MHz (INTOSC).

7.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Optional LP oscillator
- Synchronous or asynchronous operation
- Timer1 gate (count enable) via comparator or $\overline{\text{T1G}}$ pin
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with ECCP)
- Comparator output synchronization to Timer1 clock

Figure 7-1 is a block diagram of the Timer1 module.

7.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter.

7.2 Clock Source Selection

The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally.

Clock Source	TMR1CS	T1ACS		
Fosc/4	0	0		
Fosc	0	1		
T1CKI pin	1	x		

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7		•				-	bit 0
Legend:							
R = Readable bit W = Writ			bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 7							
bit 6-3	TOUTPS<3:0	>: Timer2 Out	out Postscaler	Select bits			
	0000 =1:1 Pc	stscaler					
	0001 =1:2 Pc	ostscaler					
	0010 =1:3 Pc	ostscaler					
	0011 =1:4 Pc	ostscaler					
	0100 =1:5 Pc	ostscaler					
	0101 =1:6 Pc	ostscaler					
	0110 =1:7 Pc	ostscaler					
	0111 =1:8 Pc	ostscaler					
	1000 =1:9 Pc	ostscaler					
	1001 =1:10 F	ostscaler					
	1010 =1:11 P						
	1011 =1:12 F						
	1100 = 1.13 F						
	1110 = 1.14 F						
	1111 =1.16 F	Postscaler					
bit 2	TMR2ON: Tir	ner2 On bit					
Sit L	1 – Timer2 is						
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 =Prescale	ris 1					
	01 =Prescale	ris 4					
	1x =Prescale	r is 16					

REGISTER 8-1: T2CON: TIMER 2 CONTROL REGISTER

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	value on all other Resets
GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	-	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00-0-00
—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	-	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00-0-00
Timer2 Module Period Register								1111 1111	1111 1111
Holding Register for the 8-bit TMR2 Register								0000 0000	0000 0000
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
in lo	Sit 7 GIE — ner2 Mo Iding R —	Bit 6 GIE PEIE — ADIE ⁽¹⁾ — ADIF ⁽¹⁾ ner2 Module Period Iding Register for the — TOUTPS3	Sit 7 Bit 6 Bit 5 GIE PEIE TOIE ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ her2 Module Period Register Iding Register for the 8-bit TMR2 TOUTPS3 TOUTPS2	Sit 7 Bit 6 Bit 5 Bit 4 GIE PEIE TOIE INTE - ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - ner2 Module Period Register Iding Register for the 8-bit TMR2 Register - TOUTPS3 TOUTPS2 TOUTPS1	Sit 7 Bit 6 Bit 5 Bit 4 Bit 3 GIE PEIE TOIE INTE GPIE - ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - CMIE - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - CMIF ner2 Module Period Register Iding Register for the 8-bit TMR2 Register - TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0	Sit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 GIE PEIE TOIE INTE GPIE TOIF - ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - CMIE - - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - CMIF - ner2 Module Period Register Iding Register for the 8-bit TMR2 Register - TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON	Sit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 GIE PEIE TOIE INTE GPIE TOIF INTF - ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - CMIE - TMR2IE ⁽¹⁾ - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - CMIF - TMR2IF ⁽¹⁾ - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - CMIF - TMR2IF ⁽¹⁾ ner2 Module Period Register - TMR2IF ⁽¹⁾ - CMIF Iding Register for the 8-bit TMR2 Register - TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1	Sit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 GIE PEIE TOIE INTE GPIE TOIF INTF GPIF - ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ - CMIE - TMR2IE ⁽¹⁾ TMR1IE - ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ - CMIF - TMR2IF ⁽¹⁾ TMR1IF ner2 Module Period Register - TMR2IF ⁽¹⁾ TMR1IF Iding Register for the 8-bit TMR2 Register - TMR2ON T2CKPS1 T2CKPS0	Sit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Value on POR, BORGIEPEIETOIEINTEGPIETOIFINTFGPIF 0000 0000 -ADIE ⁽¹⁾ CCP1IE ⁽¹⁾ -CMIE-TMR2IE ⁽¹⁾ TMR1IE $-00 0-00$ -ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ -CMIF-TMR2IF ⁽¹⁾ TMR1IF $-00 0-00$ -ADIF ⁽¹⁾ CCP1IF ⁽¹⁾ -CMIF-TMR2IF ⁽¹⁾ TMR1IF $-00 0-00$ ner2 Module Period Register111111111111111111111111Iding Register for the 8-bit TMR2 Register000000000000-TOUTPS3TOUTPS2TOUTPS0TMR2ONT2CKPS1T2CKPS0-

Legend:x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.Note1:For PIC12F615/617/HV615 only.

9.11 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

12.0 SPECIAL FEATURES OF THE CPU

The PIC12F609/615/617/12HV609/615 has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving features and offer code protection.

These features are:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Oscillator selection
- Sleep
- Code protection
- ID Locations
- In-Circuit Serial Programming

The PIC12F609/615/617/12HV609/615 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions-on-chip, most applications need no external Reset circuitry.

The Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through:

- External Reset
- Watchdog Timer Wake-up
- An interrupt

Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 12-1).

12.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations as shown in Register 12-1. These bits are mapped in program memory location 2007h.

Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See *Memory Programming Specification* (DS41204) for more information.

NOTES:

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.					

IORLW	Inclusive OR literal with W						
Syntax:	[<i>label</i>] IORLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .OR. $k \rightarrow$ (W)						
Status Affected:	Z						
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.						

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

Param	Device	Unito	Min	Turn	Max	Condition		
No.	Characteristics	Units	IVIIN	тур	Max	Vdd	Note	
D010				13	58	2.0		
	Supply Current (IDD)	μΑ		19	67	3.0	IDD LP OSC (32 kHz)	
			_	32	92	5.0		
D011			_	135	316	2.0		
		μΑ		185	400	3.0	IDD XT OSC (1 MHz)	
				300	537	5.0		
D012			_	240	495	2.0		
		μΑ	_	360	680	3.0	IDD XT OSC (4 MHz)	
		mA	_	0.660	1.20	5.0		
D013			_	75	158	2.0		
		μA	_	155	338	3.0	IDD EC OSC (1 MHz)	
			_	345	792	5.0		
D014		ıιΔ	_	185	357	2.0		
		μΛ	_	325	625	3.0	IDD EC OSC (4 MHz)	
		mA	_	0.665	1.30	5.0		
D016			_	245	476	2.0		
		μΑ	_	360	672	3.0	IDD INTOSC (4 MHz)	
			_	620	1.10	5.0		
D017		μΑ	_	395	757	2.0		
		m۸	_	0.620	1.20	3.0	IDD INTOSC (8 MHz)	
			_	1.20	2.20	5.0		
D018			_	175	332	2.0		
		μA	_	285	518	3.0	IDD EXTRC (4 MHz)	
			_	530	972	5.0		
D019		mΑ	—	2.20	4.10	4.5		
			_	2.80	4.80	5.0		

TABLE 16-14: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC12F615-H (High Temp.)

Param No.	Sym	Characteristic	Frequency Tolerance	Units	Min	Тур	Max	Conditions
OS08	INTosc	Int. Calibrated INTOSC Freq. ⁽¹⁾	±10%	MHz	7.2	8.0	8.8	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ \textbf{-40^{\circ}C} \leq T \text{A} \leq 150^{\circ}\text{C} \end{array}$

TABLE 16-18: OSCILLATOR PARAMETERS FOR PIC12F615-H (High Temp.)

Note 1: To ensure these oscillator frequency tolerances, Vdd and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

TABLE 16-19: COMPARATOR SPECIFICATIONS FOR PIC12F615-H (High Temp.)

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
CM01	Vos	Input Offset Voltage	mV		±5	±20	(Vdd - 1.5)/2

FIGURE 17-27: PIC12HV609/615 IPD COMPARATOR (SINGLE ON) vs. VDD

FIGURE 17-45: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)

FIGURE 17-48: 1.2V REFERENCE VOLTAGE vs. TEMP (TYPICAL)

FIGURE 17-49: SHUNT REGULATOR VOLTAGE vs. INPUT CURRENT (TYPICAL)

8-Lead Plastic Dual Flat, No Lead Package (MF) – 3x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	8				
Pitch	е		0.65 BSC			
Overall Height	А	0.80 0.90 1.00				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Length	D	3.00 BSC				
Exposed Pad Width	E2	0.00 – 1.60				
Overall Width	Е	3.00 BSC				
Exposed Pad Length	D2	0.00	-	2.40		
Contact Width	b	0.25 0.30 0.35				
Contact Length	L	0.20 0.30 0.55				
Contact-to-Exposed Pad	К	0.20 – –				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-062B

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		8		
Pitch	е		0.80 BSC		
Overall Height	А	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	4.00 BSC			
Exposed Pad Width	E2	0.00 2.20 2.80			
Overall Width	E	4.00 BSC			
Exposed Pad Length	D2	0.00	3.00	3.60	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-131D