E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
GP0/AN0/CIN+/P1B/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN0	AN	_	A/D Channel 0 input
	CIN+	AN	—	Comparator non-inverting input
	P1B	—	CMOS	PWM output
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
GP1/AN1/CIN0-/VREF/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN1	AN	_	A/D Channel 1 input
	CIN0-	AN		Comparator inverting input
	Vref	AN	—	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
GP2/AN2/T0CKI/INT/COUT/CCP1/ P1A	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	—	Timer0 clock input
	INT	ST	_	External Interrupt
	COUT	_	CMOS	Comparator output
	CCP1	ST	CMOS	Capture input/Compare input/PWM output
	P1A	—	CMOS	PWM output
GP3/T1G*/MCLR/VPP	GP3	TTL	—	General purpose input with interrupt-on-change
	T1G*	ST	—	Timer1 gate (count enable), alternate pin
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV	—	Programming voltage
GP4/AN3/CIN1-/T1G/P1B*/OSC2/ CLKOUT	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	AN3	AN	_	A/D Channel 3 input
	CIN1-	AN	—	Comparator inverting input
	T1G	ST	_	Timer1 gate (count enable)
	P1B*	—	CMOS	PWM output, alternate pin
	OSC2	—	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
GP5/T1CKI/P1A*/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on- change
	T1CKI	ST	_	Timer1 clock input
	P1A*		CMOS	PWM output, alternate pin
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST	_	External clock input/RC oscillator connection
VDD	Vdd	Power		Positive supply
Vss	Vss	Power	—	Ground reference

TABLE 1-2: PIC12F615/617/HV615 PINOUT DESCRIPTION

* Alternate pin function.

Legend: AN=Analog input or output

CMOS=CMOS compatible input or output HV= High Voltage ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input

XTAL=Crystal

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING PIC12F609/615/617/12HV609/615

REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PMDATL7 | PMDATL6 | PMDATL5 | PMDATL4 | PMDATL3 | PMDATL2 | PMDATL1 | PMDATL0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

-n = Value at POR

PMDATL<7:0>: 8 Least Significant Address bits to Write or Read from Program Memory

REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	

'0' = Bit is cleared

bit 7-0 **PMADRL<7:0>**: 8 Least Significant Address bits for Program Memory Read/Write Operation

REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PMDATH5	PMDATH4	PMDATH3	PMDATH2	PMDATH1	PMDATH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDATH<5:0>: 6 Most Significant Data bits from Program Memory

'1' = Bit is set

REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	—	—	PMADRH2	PMADRH1	PMADRH0	
bit 7 bit C								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POI	R	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn	

bit 3 Unimplemented: Read as '0'

bit 2-0 **PMADRH<2:0>**: Specifies the 3 Most Significant Address bits or high bits for program memory reads.

x = Bit is unknown

FIGURE 3-1:	FLASH PROGRAM MEMORY READ CYCLE EXECUTION	
	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 <td< th=""><th></th></td<>	
Flash ADDR	PC + 1 PMADRH,PMADRL PC + 3 PC + 4 PC + 5	
Flash DATA	INSTR (PC) INSTR (PC + 1) PMDATH,PMDATL INSTR (PC + 3) INSTR (PC + 4)	
	INSTR (PC - 1) BSF PMCON1,RD INSTR (PC + 1) NOP INSTR (PC + 3) INSTR (PC + 4) Executed here Executed here Executed here Executed here Executed here	
RD bit]
PMDATH PMDATL Register		† 1
PMRHLT		

4.4.1.1 OSCTUNE Register

The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 4-1). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4:0>: Frequency Tuning bits
01111 = Maximum frequency
01110 =
•
•
•
00001 =
00000 = Oscillator module is running at the calibrated frequency
11111 =
•
•
•
10000 = Minimum frequency

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	—	—
OSCTUNE	_		_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

6.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

6.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 6-1, must be executed.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

	BANKSEL	TMR0	i
	CLRWDT		;Clear WDT
	CLRF	TMR0	;Clear TMR0 and
			;prescaler
	BANKSEL	OPTION_REG	;
	BSF	OPTION_REG,PSA	;Select WDT
	CLRWDT		;
			;
	MOVLW	b'11111000'	;Mask prescaler
	ANDWF	OPTION_REG,W	;bits
	IORLW	b'00000101'	;Set WDT prescaler
	MOVWF	OPTION_REG	;to 1:32
I			

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 6-2).

EXAMPLE 6-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BANKSEL	OPTION_REG	;
MOVLW	b'11110000'	;Mask TMR0 select and
ANDWF	OPTION_REG,W	;prescaler bits
IORLW	b'0000011'	;Set prescale to 1:16
MOVWF	OPTION_REG	;

6.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is frozen during Sleep.

6.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in **Section 16.0 "Electrical Specifications"**.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	GPPU: GPIC 1 = GPIO pul 0 = GPIO pul) Pull-up Enabl Il-ups are disab Il-ups are enab	e bit Ied Ied by individu	ual PORT latch	values in WPL	J register	
bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin							
bit 5	TOCS: TMR0 1 = Transition 0 = Internal in	Clock Source n on T0CKI pin nstruction cycle	Select bit e clock (Fosc/	4)			
bit 4	TOSE: TMR0 1 = Incremen 0 = Incremen	Source Edge at on high-to-lov at on low-to-hig	Select bit w transition or h transition or	n T0CKI pin n T0CKI pin			
bit 3	PSA: Prescale 1 = Prescale 0 = Prescale	ler Assignment r is assigned to r is assigned to	t bit the WDT the Timer0 m	nodule			
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits				
	BIT	VALUE TMR0	RATE WDT R	ATE			
		D00 1 : 2 D01 1 : 4 D10 1 : 8 D11 1 : 1 100 1 : 3 101 1 : 6 110 1 : 1 111 1 : 2	1:1 1:2 1:4 1:8 2 1:16 28 1:64 56	8			

REGISTER 6-1: OPTION_REG: OPTION REGISTER

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
TMR0	Timer0 M	odule Regis	ster						xxxx xxxx	uuuu uuuu	
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	x000 000x	x000 000x	
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
TRISIO	—	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111	

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

9.0 COMPARATOR MODULE

The comparator can be used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparator is a very useful mixed signal building block because it provides analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Programmable input section
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- PWM shutdown
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference
- User-enable Comparator Hysteresis

9.1 Comparator Overview

The comparator is shown in Figure 9-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less

than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 9-1:SINGLE COMPARATOR

els and the

FIGURE 9-2: COMPARATOR SIMPLIFIED BLOCK DIAGRAM

9.5 Comparator Interrupt Operation

The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figure 9-4 and Figure 9-5). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMCON0 register is read or the comparator output returns to the previous state.

- **Note 1:** A write operation to the CMCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle.
 - 2: Comparator interrupts will operate correctly regardless of the state of CMOE.

The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator's return to the previous state, otherwise no interrupt will be generated.

Software will need to maintain information about the status of the comparator output, as read from the CMCON1 register, to determine the actual change that has occurred.

The CMIF bit of the PIR1 register is the Comparator Interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, an interrupt can be generated.

The CMIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CMIF bit of the PIR1 register will still be set if an interrupt condition occurs.

COMPARATOR INTERRUPT TIMING WITH CMCON0 READ

- Note 1: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF of the PIR1 register interrupt flag may not get set.
 - 2: When a comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

11.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 4.0** "Oscillator Module" for additional details.

11.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register.
- 5. Configure and start Timer2:
- Clear the TMR2IF interrupt flag bit of the PIR1 register.
- Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
- Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCP1 pin output driver by clearing the associated TRIS bit.

11.4.2 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each PWM output pin (P1A and P1B). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The P1A and P1B output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

11.4.3 OPERATION DURING SLEEP

When the device is placed in sleep, the allocated timer will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state.

REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPAS	E ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating							
bit 6-4	ECCPAS<2:0 000 =Auto-Sł 001 =Compa 010 =Auto-Sł 011 =Compa 100 =VIL on I 101 =VIL on I 110 =VIL on I 111 =VIL on I	ECCP Auto nutdown is disa rator output ch nutdown is disa rator output ch NT pin NT pin or Com NT pin(¹⁾ NT pin or Com	-shutdown Sou Ibled ange Ibled ange ⁽¹⁾ parator change	urce Select bits	5		
bit 3-2	PSSAC<1:0>: Pin P1A Shutdown State Control bits 00 = Drive pin P1A to '0' 01 = Drive pin P1A to '1' 1x = Pin P1A tri-state						
bit 1-0	PSSBD<1:0> 00 = Drive pir 01 = Drive pir 1x = Pin P1B	: Pin P1B Shu n P1B to '0' n P1B to '1' tri-state	tdown State Co	ontrol bits			
Note 1:	If CMSYNC is ena	bled, the shutc	lown will be de	layed by Time	r1.		

Note 1:	The auto-shutdown condition is a level-							
	based signal, not an edge-based signal.							
	As long as the level is present, the auto-							
	shutdown will persist.							
2:	Writing to the ECCPASE bit is disabled							
	while an auto-shutdown condition							

persists.
3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.

NOTES:

Mnemonic,		Description	0		14-Bit	Opcode	Status	Natas	
Opera	inds	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REC	SISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REG	STER OPER	RATIO	NS			•	
BCE	fb	Bit Clear f	1	01	00bb	bfff	ffff		12
BSF	f b	Bit Set f	1	01	01bb	bfff	ffff		1.2
BTESC	f b	Bit Test f. Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTESS	f, b	Bit Test f. Skip if Set	1 (2)	01	11bb	bfff	ffff		3
01100	1, 5				1100	DIII			
	k		1	11	111	lelelele	lelelele		1
	r k		1	11	1001	L L L L L L	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	0, 00, 2	
	r k		2	10		KKKK lelelele	KKKK lelelele	2	
	к _	Clear Watchdog Timer	1	10	0000	0110	0100		
CLINDI	- k	Go to address	2	10	1 le le le	lelelele	le le le le	10,10	
	r k	Inclusive OR literal with W	1	11	1000	L L L L L	L L L L L	7	
MOVIN	r k	Move literal to W	1	11	0.010	L L L L L	L L L L L	2	
RETEIE	л —	Return from interrupt	2	00	0048	0000	1001		
RETIW	- k	Return with literal in W	2	11	0100	0000 2222	1001 2001		
RETURN	г. _	Return from Subroutine	2	00	0000	0000	1000		
SIEED	_	Go into Standby mode	1	00	0000	0110	1000		
SUBIW	- k	Subtract W from literal	1	11	110-	0110 66666	0011 66666		
XORIW	r L	Exclusive OR literal with W	1	11	1010	L L L L	LFFF	7	
NORLW	r.		1	1 <u>1</u>	TOTO	ĸĸĸĸ	ĸĸĸĸ	<u> </u>	

TABLE 14-2: PIC12F609/615/617/12HV609/615 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

16.5 DC Characteristics: PIC12F609/615/617 - E (Extended)

DC CHA	RACTERISTICS	Standa Operat	ard Oper ing temp	ating Co erature	onditions -40°C	nditions (unless otherwise stated) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended			
Param	Device Characteristics	Min	Truck	Max	Unite	Conditions			
No.	Device Characteristics	win	турт	wax	Units	Vdd	Note		
D020E	Power-down Base	_	0.05	4.0	μA	2.0	WDT, BOR, Comparator, VREF and		
		—	0.15	5.0	μA	3.0	T1OSC disabled		
	PIC12F609/615/617	_	0.35	8.5	μA	5.0			
D021E		—	0.5	5.0	μA	2.0	WDT Current ⁽¹⁾		
		—	2.5	8.0	μA	3.0			
		_	9.5	19	μΑ	5.0			
D022E		—	5.0	15	μA	3.0	BOR Current ⁽¹⁾		
		_	6.0	19	μA	5.0			
D023E		—	50	70	μA	2.0	Comparator Current ⁽¹⁾ , single		
		—	55	75	μA	3.0	comparator enabled		
		—	60	80	μA	5.0			
D024E		—	30	40	μA	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	45	60	μA	3.0			
		_	75	105	μA	5.0			
D025E*		—	39	50	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
		_	59	80	μΑ	3.0			
		_	98	130	μΑ	5.0			
D026E		_	5.5	16	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
			7.0	18	μA	3.0			
		—	8.5	22	μA	5.0]		
D027E		_	0.2	6.5	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
		—	0.36	10	μA	5.0	progress		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

*

16.6 DC Characteristics: PIC12HV609/615 - I (Industrial)

DC CH	ARACTERISTICS	Standa Operat	ard Oper ing temp	ating Co erature	onditions -40°C	itions (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param	Davias Characteristics	Min	Turnet	Max	Unito	Conditions			
No.	Device Characteristics	IVIIN	турт	wax	Units	Vdd	Note		
D020	Power-down Base Current (IPD) ^(2,3)	—	135	200	μΑ	2.0	WDT, BOR, Comparator, VREF and T1OSC disabled		
		_	210	280	μΑ	3.0			
	PIC12HV609/615	_	260	350	μΑ	4.5			
D021		_	135	200	μΑ	2.0	WDT Current ⁽¹⁾		
		_	210	285	μΑ	3.0			
		—	265	360	μΑ	4.5			
D022		_	215	285	μΑ	3.0	BOR Current ⁽¹⁾		
		_	265	360	μA	4.5			
D023		—	185	270	μΑ	2.0	Comparator Current ⁽¹⁾ , single		
		_	265	350	μΑ	3.0	comparator enabled		
		_	320	430	μΑ	4.5			
D024		—	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	255	330	μΑ	3.0			
		—	330	430	μA	4.5			
D025*		—	175	245	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)		
		_	275	350	μΑ	3.0]		
		_	355	450	μΑ	4.5			
D026		_	140	205	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
		_	220	290	μA	3.0]		
		_	270	360	μA	4.5]		
D027		—	210	280	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in		
		—	260	350	μΑ	4.5	progress		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Shunt regulator is always on and always draws operating current.

16.9 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Тур	Units	Conditions			
TH01	θJA	Thermal Resistance	84.6*	C/W	8-pin PDIP package			
		Junction to Ambient	149.5*	C/W	8-pin SOIC package			
			211*	C/W	8-pin MSOP package			
			60*	C/W	8-pin DFN 3x3mm package			
			44*	C/W	8-pin DFN 4x4mm package			
TH02	θJC	Thermal Resistance	41.2*	C/W	8-pin PDIP package			
		Junction to Case	39.9*	C/W	8-pin SOIC package			
			39*	C/W	8-pin MSOP package			
			9*	C/W	8-pin DFN 3x3mm package			
			3.0*	C/W	8-pin DFN 4x4mm package			
TH03	TDIE	Die Temperature	150*	С				
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	Pinternal = Idd x Vdd (NOTE 1)			
TH06	Pi/o	I/O Power Dissipation		W	$ PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH)) $			
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tdie - Ta)/θja (NOTE 2)			

* These parameters are characterized but not tested.

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: T_A = Ambient temperature.

FIGURE 16-9: PIC12F615/617/HV615 CAPTURE/COMPARE/PWM TIMINGS (ECCP)

TABLE 16-6: PIC12F615/617/HV615 CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Character	ristic	Min	Тур†	Max	Units	Conditions	
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20		—	ns		
			With Prescaler	20		_	ns		
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5Tcy + 20		—	ns		
			With Prescaler	20		—	ns		
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 16-7: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym	Characteristics		Min	Тур†	Мах	Units	Comments		
CM01	Vos	Input Offset Voltage ⁽²⁾			± 5.0	± 10	mV			
CM02	Vсм	Input Common Mode Voltage		0	—	Vdd - 1.5	V			
CM03*	CMRR	Common Mode Rejection Ratio		+55	—	—	dB			
CM04*	Trt	Response Time ⁽¹⁾	Falling	—	150	600	ns			
			Rising	—	200	1000	ns			
CM05*	TMC2COV	Comparator Mode Change to Output Valid		_	—	10	μS			
CM06*	VHYS	Input Hysteresis Voltage			45	60	mV			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. The other input is at (VDD -1.5)/2.

2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.

TABLE 16-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments		
CV01*	CLSB	Step Size ⁽²⁾		Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)		
CV02*	CACC	Absolute Accuracy ⁽³⁾			± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω			
CV04*	CST	Settling Time ⁽¹⁾	_	—	10	μS			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

- 2: See Section 9.10 "Comparator Voltage Reference" for more information.
- **3:** Absolute Accuracy when CVREF output is \leq (VDD -1.5).

TABLE 16-9: VOLTAGE REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
VR01	VP6out	VP6 voltage output	0.5	0.6	0.7	V	
VR02	V1P2out	V1P2 voltage output	1.05	1.20	1.35	V	
VR03*	TSTABLE	Settling Time		10	_	μS	

These parameters are characterized but not tested. *

TABLE 16-10: SHUNT REGULATOR SPECIFICATIONS (PIC12HV609/615 only)

SHUNT REGULATOR CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
SR01	VSHUNT	Shunt Voltage	4.75	5	5.4	V		
SR02	ISHUNT	Shunt Current	4	_	50	mA		
SR03*	TSETTLE	Settling Time		_	150	ns	To 1% of final value	
SR04	CLOAD	Load Capacitance	0.01		10	μF	Bypass capacitor on VDD pin	
SR05	ΔISNT	Regulator operating current	_	180		μA	Includes band gap reference current	

These parameters are characterized but not tested.

© 2010 Microchip Technology Inc.