

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv609t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page		
Bank 0													
00h	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)										
01h	TMR0	Timer0 Mod	lule's Registe	er						xxxx xxxx	53, 11		
02h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	25, 11		
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	ТО	PD	Z	DC	С	0001 1xxx	18, 11		
04h	FSR	Indirect Dat	a Memory Ac	dress Pointe	er					xxxx xxxx	25, 11		
05h	GPIO	-	_	GP5	GP4	GP3	GP2	GP1	GP0	x0 x000	43, 11		
06h	_	Unimpleme	nted							—	—		
07h	_	Unimpleme	nted							—	—		
08h	_	Unimpleme	nted							—	—		
09h	_	Unimpleme	nted							—	—		
0Ah	PCLATH	_	_	_	Write	e Buffer for up	oper 5 bits of	Program Co	unter	0 0000	25, 11		
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	20, 11		
0Ch	PIR1	_	_	_	_	CMIF	-	_	TMR1IF	00	22, 11		
0Dh	—	Unimpleme	nted							—	_		
0Eh	TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	57, 11		
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit TMF	R1 Register			xxxx xxxx	57, 11		
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	62, 11		
11h	_	Unimpleme	nted		•			•	•	_			
12h	_	Unimpleme	nted							_			
13h	_	Unimpleme	nted							_			
14h	—	Unimpleme	nted							—			
15h	—	Unimpleme	nted							—			
16h	—	Unimpleme	nted							—			
17h	—	Unimpleme	nted							—			
18h	—	Unimpleme	nted							—			
19h	VRCON	CMVREN	_	VRR	FVREN	VR3	VR2	VR1	VR0	0-00 0000	76, 11		
1Ah	CMCON0	CMON	COUT	CMOE	CMPOL	—	CMR	—	CMCH	0000 -0-0	72, 11		
1Bh	—					—		—		—			
1Ch	CMCON1	_	_	_	T1ACS	CMHYS	_	T1GSS	CMSYNC	0 0-10	73, 11		
1Dh	—	Unimpleme	nted							_	—		
1Eh	_	- Unimplemented											
1Fh	_	Unimpleme	nted							_			

TABLE 2-1: PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

IRP and RP1 bits are reserved, always maintain these bits clear. 1:

2: Read only register.

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1
—	—	—	—	ANS3	—	ANS1	ANS0
bit 7							bit 0

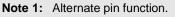
Legend:						
R = Readable bit	dable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-4	Unimplemented: Read as '0'
bit 3	ANS3: Analog Select Between Analog or Digital Function on Pin GP4 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
bit 2	Unimplemented: Read as '0'
bit 1	 ANS1: Analog Select Between Analog or Digital Function on Pin GP1 1 = Analog input. Pin is assigned as analog input.⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or special function.
bit 0	 ANS0: Analog Select Between Analog or Digital Function on Pin GP0 0 = Digital I/O. Pin is assigned to port or special function. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 5-4: ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615)

U-0	R/W-1 R/W-1		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	- ADCS2 ADCS1 ADCS		ADCS0	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0


Legend:						
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7	Unimplemented : Read as '0'
bit 6-4	ADCS<2:0>: A/D Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32
	x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64
bit 3-0	ANS<3:0> : Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
Note 1:	Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on- change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

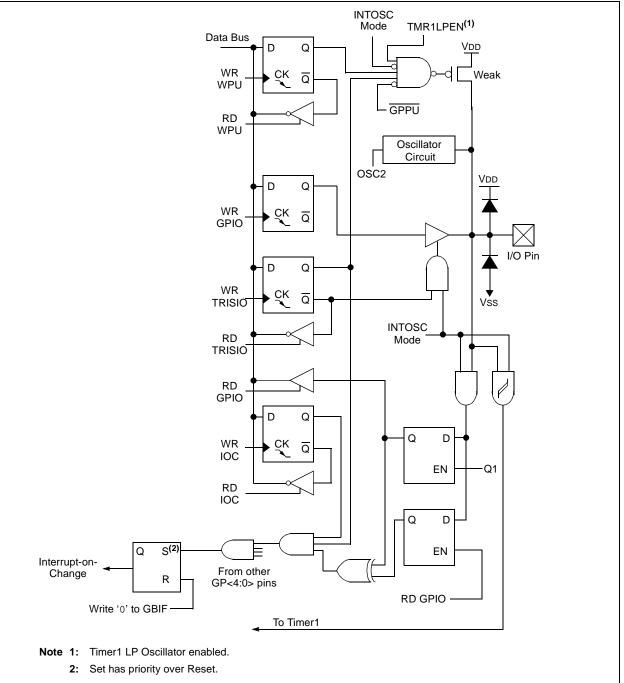

5.2.4.6 GP5/T1CKI/P1A^(1, 2)/OSC1/CLKIN

Figure 5-5 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 clock input
- PWM output, alternate pin^(1, 2)
- a crystal/resonator connection
- a clock input

2: PIC12F615/617/HV615 only.

FIGURE 5-5: BLOCK DIAGRAM OF GP5

TABLE 5-1:SUMMARY OF REGISTERS ASSOCIATED WITH GPIO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	_	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾	ANS3	ANS2 ⁽¹⁾	ANS1	ANS0	-000 1111	-000 1111
CMCON0	CMON	COUT	CMOE	CMPOL	_	CMR	_	CMCH	0000 -0-0	0000 -0-0
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	u0 u000
TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
WPU	_	—	WPU5	WPU4	WPU3	WPU2	WPU1	WPU0	11 1111	11 -111
T1CON	T1GINV	TMR1GE	TICKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
CCP1CON ⁽¹⁾	P1M	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0-00 0000	0-00 0000
APFCON ⁽¹⁾	_	—	_	T1GSEL	—	—	P1BSEL	P1ASEL	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by GPIO. Note 1: PIC12F615/617/HV615 only.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0					
bit 7						·	bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ıd as '0'						
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7		Pull-up Enabl										
		ll-ups are disab		ual PORT latch	voluce in M/DI	Lragistor						
bit 6	•	errupt Edge Se	•			Jiegistei						
		on rising edge										
		on falling edge										
bit 5	T0CS: TMR0 Clock Source Select bit											
	1 = Transition on T0CKI pin											
	0 = Internal i	nstruction cycle	e clock (Fosc/	(4)								
bit 4	TOSE: TMR0	T0SE: TMR0 Source Edge Select bit										
		it on high-to-lov it on low-to-hig										
bit 3	PSA: Presca	ler Assignmen	t bit									
		r is assigned to										
		r is assigned to		nodule								
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits									
	BIT	VALUE TMR0	RATE WDT R	ATE								
		000 1:2										
		001 1:4 010 1:8										
		011 1:1										
		100 1:3	-									
		101 1:6 110 1:1										
		111 1:2										

REGISTER 6-1: OPTION_REG: OPTION REGISTER

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TMR0	Timer0 M	odule Regis	ster						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000x
OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TRISIO	—		TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

7.6 Timer1 Gate

Timer1 gate source is software configurable to be the T1G pin (or the alternate T1G pin) or the output of the Comparator. This allows the device to directly time external events using T1G or analog events using the Comparator. See the CMCON1 Register (Register 9-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on Delta-Sigma A/D converters, see the Microchip web site (www.microchip.com).

Note: TMR1GE bit of the T1CON register must be set to use either T1G or COUT as the Timer1 gate source. See Register 9-2 for more information on selecting the Timer1 gate source.

Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or the Comparator output. This configures Timer1 to measure either the active-high or active-low time between events.

7.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- Timer1 interrupt enable bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

7.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set

The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

7.9 ECCP Capture/Compare Time Base (PIC12F615/617/HV615 only)

The ECCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

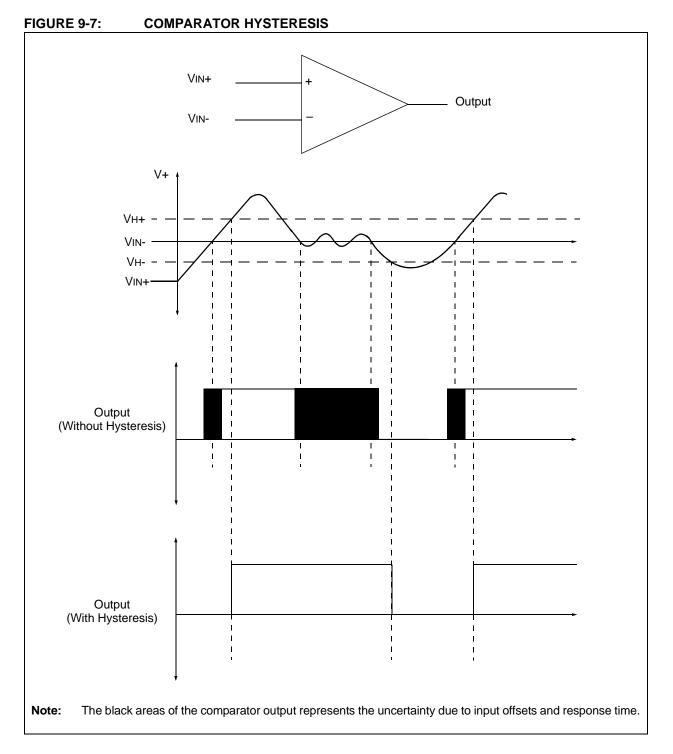
In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 11.0 "Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)".

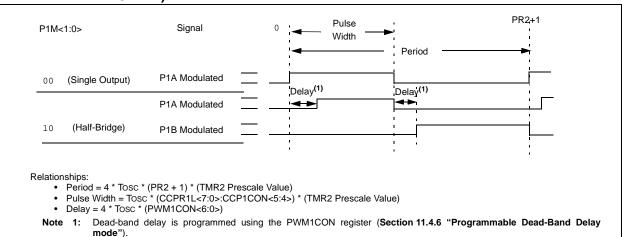
NOTES:

9.6 Operation During Sleep

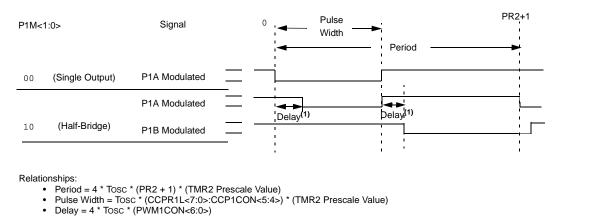
The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the **Section 16.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by clearing the CMON bit of the CMCON0 register.

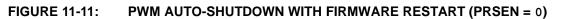

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CMIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

9.7 Effects of a Reset


A device Reset forces the CMCON1 register to its Reset state. This sets the comparator and the voltage reference to the OFF state.

9.11 Comparator Hysteresis


Each comparator has built-in hysteresis that is user enabled by setting the CMHYS bit of the CMCON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 9-7 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).


FIGURE 11-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

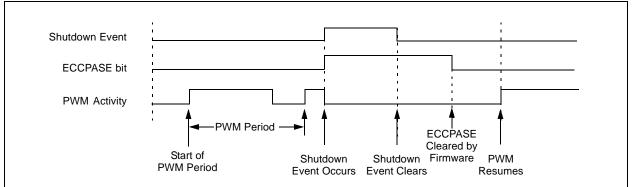
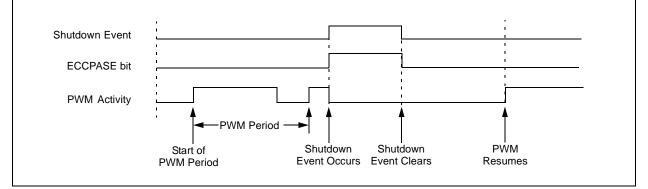


FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 "Programmable Dead-Band Delay mode").



11.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 11-12: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

12.2 Calibration Bits

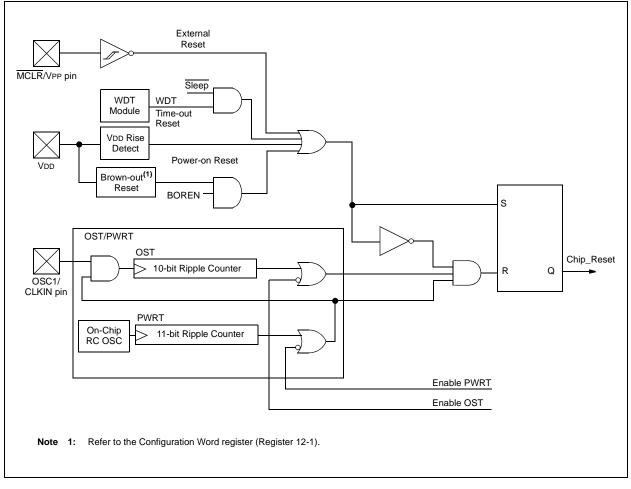
The 8 MHz internal oscillator is factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2008h). The Calibration Word is not erased when using the specified bulk erase sequence in the *Memory Programming Specification* (DS41204) and thus, does not require reprogramming.

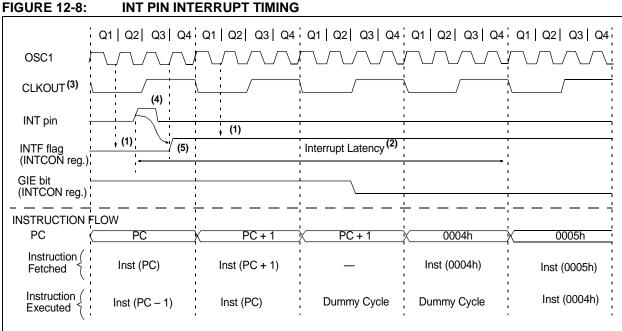
12.3 Reset

The PIC12F609/615/617/12HV609/615 device differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)


WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-5 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 16.0** "**Electrical Specifications**" for pulse-width specifications.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Note 1: INTF flag is sampled here (every Q1).

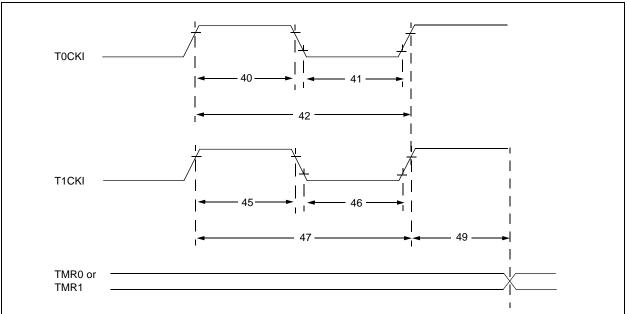
- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 16.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

TABLE 12-7: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC		_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-000 0-00
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE		TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-000 0-00

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

Note 1: PIC12F615/617/HV615 only.

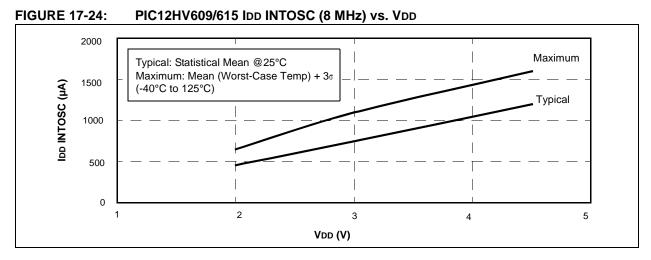

16.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

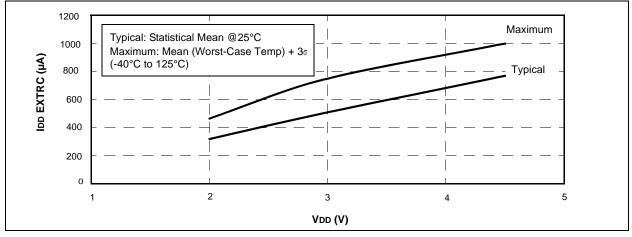
Ambient temperature under bias40° to +125°					
Storage temperature	65°C to +150°C				
Voltage on VDD with respect to Vss	-0.3V to +6.5V				
Voltage on MCLR with respect to Vss	-0.3V to +13.5V				
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)				
Total power dissipation ⁽¹⁾					
Maximum current out of Vss pin	95 mA				
Maximum current into Vod pin	95 mA				
Input clamp current, Iiк (Vi < 0 or Vi > VDD)± 20					
Output clamp current, Iок (Vo < 0 or Vo >VDD)	± 20 mA				
Maximum output current sunk by any I/O pin	25 mA				
Maximum output current sourced by any I/O pin	25 mA				
Maximum current sunk by GPIO	90 mA				
Maximum current sourced GPIO	90 mA				
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VD IOL).	⊡ – Vон) х Iон} + ∑(Vol х				

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

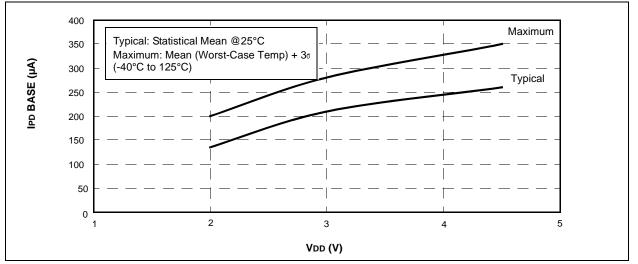
FIGURE 16-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS TABLE 16-5:

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40* TT0H T		T0CKI High Pulse Width No Prescaler			0.5 TCY + 20	_	_	ns	
		Wi		With Prescaler	10	—	_	ns	
41* TTOL		T0CKI Low P	ulse Width	No Prescaler	0.5 TCY + 20	—	_	ns	
		With Pre		With Prescaler	10	—	—	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45* T⊤1H	TT1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	—	—	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
46* TT1L	TT1L	L T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
47* TT1P		TT1P T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	_	ns	
48	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			-	32.768	—	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	-	Timers in Sync mode


Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.


t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	1.27 BSC		
Overall Height	А	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom		5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B (05/2008)

Added Graphs. Revised 28-Pin ICD Pinout, Electrical Specifications Section, Package Details.

Revision C (09/2009)

Updated adding the PIC12F617 device throughout the entire data sheet; Added Figure 2-2 to Memory Organization section; Added section 3 "FLASH PROGRAM MEMORY SELF READ/SELF WRITE CONTROL (FOR PIC12F617 ONLY)"; Updated Register 12-1; Updated Table12-5 adding PMCON1, PMCON2, PMADRL, PMADRH, PMDATL, PMDATH; Added section 16-12 in the Electrical Specification section; Other minor edits.

Revision D (01/2010)

Updated Figure 17-50; Revised 16.8 DC Characteristics; Removed Preliminary Status.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC12F6XX Family of devices.

B.1 PIC12F675 to PIC12F609/615/ 12HV609/615

TABLE B-1:	FEATURE COMPARISON
------------	--------------------

Feature	PIC12F675	PIC12F609/ 615/ 12HV609/615	
Max Operating Speed	20 MHz	20 MHz	
Max Program Memory (Words)	1024	1024	
SRAM (bytes)	64	64	
A/D Resolution	10-bit	10-bit (615 only)	
Timers (8/16-bit)	1/1	2/1 (615) 1/1 (609)	
Oscillator Modes	8	8	
Brown-out Reset	Y	Y	
Internal Pull-ups	RA0/1/2/4/5	GP0/1/2/4/5, MCLR	
Interrupt-on-change	RA0/1/2/3/4/5	GP0/1/2/3/4/5	
Comparator	1	1	
ECCP	N	Y (615)	
INTOSC Frequencies	4 MHz	4/8 MHz	
Internal Shunt Regulator	N	Y (PIC12HV609/ 615)	

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Range Package Pattern PIC12F609, PIC12F609T ⁽¹⁾ , PIC12HV609, PIC12HV609T ⁽¹⁾ , PIC12F615, PIC12F615T ⁽¹⁾ , PIC12HV615, PIC12HV615T ⁽¹⁾ , PIC12F617, PIC12F617T ⁽¹⁾	 a) PIC12F615-E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 b) PIC12F615-I/SN = Industrial Temp., SOIC package, 20 MHz c) PIC12F615T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz d) PIC12F609T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz
Temperature Range:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 e) PIC12HV615T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz f) PIC12HV609T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz g) PIC12F617T-E/MF = Tape and Reel, Extended Temp., 3x3 DFN, 20 MHz
Package:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 h) PIC12F617-I/P = Industrial Temp., PDIP package, 20 MHz i) PIC12F615-H/SN = High Temp., SOIC package, 20 MHz Note 1: T = in tape and reel for MSOP, SOIC and DFN packages only.
Pattern:	QTP, SQTP or ROM Code; Special Requirements (blank otherwise)	 Proposition of the provide of the prov