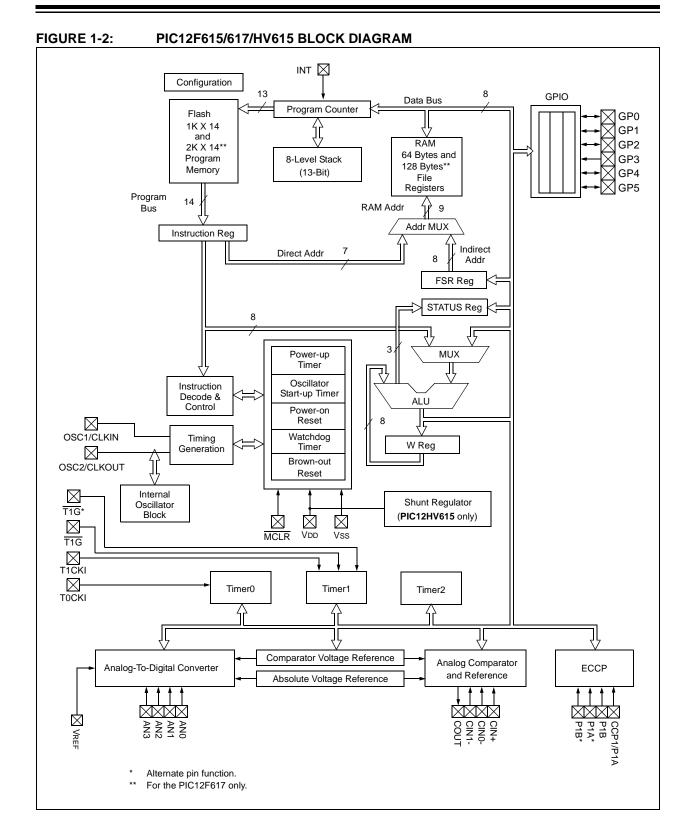
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv615-e-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
GP0/CIN+/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change		
	CIN+	AN	—	Comparator non-inverting input		
	ICSPDAT	ST	CMOS	Serial Programming Data I/O		
GP1/CIN0-/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change		
	CIN0-	AN	—	Comparator inverting input		
	ICSPCLK	ST	_	Serial Programming Clock		
GP2/T0CKI/INT/COUT	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change		
	TOCKI	ST	—	Timer0 clock input		
	INT	ST	_	External Interrupt		
	COUT	—	CMOS	Comparator output		
GP3/MCLR/Vpp	GP3	TTL	_	General purpose input with interrupt-on-change		
	MCLR	ST	_	Master Clear w/internal pull-up		
	Vpp	ΗV	—	Programming voltage		
GP4/CIN1-/T1G/OSC2/	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change		
CLKOUT	CIN1-	AN	—	Comparator inverting input		
	T1G	ST	_	Timer1 gate (count enable)		
	OSC2	_	XTAL	Crystal/Resonator		
	CLKOUT	_	CMOS	Fosc/4 output		
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change		
	T1CKI	ST	_	Timer1 clock input		
	OSC1	XTAL	_	Crystal/Resonator		
	CLKIN	ST	—	External clock input/RC oscillator connection		
Vdd	Vdd	Power	_	Positive supply		
Vss	Vss	Power	_	Ground reference		

PIC12F609/HV609 PINOUT DESCRIPTION **TABLE 1-1:**

Legend: AN=Analog input or output ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input

CMOS = CMOS compatible input or output HV= High Voltage XTAL=Crystal

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | T0IF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt
bit 3	GPIE: GPIO Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt
bit 2	T0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.2.2.4 PIE1 Register

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	—	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:									
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared	x = Bit is unknown					
bit 7	-	Unimplemented: Read as '0'							
bit 6	ADIE: A	D Converter (ADC) Interrupt	Enable bit ⁽¹⁾						
		bles the ADC interrupt bles the ADC interrupt							
bit 5	CCP1IE	CCP1 Interrupt Enable bit ⁽¹⁾)						
	 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt 								
bit 4	Unimple	Unimplemented: Read as '0'							
bit 3	CMIE: C	CMIE: Comparator Interrupt Enable bit							
	 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt 								
bit 2	Unimplemented: Read as '0'								
bit 1	TMR2IE	Timer2 to PR2 Match Interr	upt Enable bit ⁽¹⁾						
	 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt 								
bit 0	TMR1IE	TMR1IE: Timer1 Overflow Interrupt Enable bit							
	 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt 								
Note 1:	PIC12F615/6	617/HV615 only. PIC12F609/	HV609 unimplemented, read	as '0'.					

2.2.2.5 PIR1 Register

The PIR1 register contains the Peripheral Interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Interrupt Flag bit ⁽¹⁾
	1 = A/D conversion complete
	0 = A/D conversion has not completed or has not been started
bit 5	CCP1IF: CCP1 Interrupt Flag bit ⁽¹⁾
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	<u>Compare mode</u> : 1 = A TMR1 register compare match occurred (must be cleared in software)
	0 = No TMR1 register compare match occurred
	<u>PWM mode</u> :
	Unused in this mode
bit 4	Unimplemented: Read as '0'
bit 3	CMIF: Comparator Interrupt Flag bit
	1 = Comparator output has changed (must be cleared in software)
	0 = Comparator output has not changed
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit ⁽¹⁾
	 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Timer1 register overflowed (must be cleared in software)
	0 = Timer1 has not overflowed

Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as '0'.

5.0 I/O PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

5.1 GPIO and the TRISIO Registers

GPIO is a 6-bit wide port with 5 bidirectional and 1 inputonly pin. The corresponding data direction register is TRISIO (Register 5-2). Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., disable the output driver). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRIS bit will always read as '1'. Example 5-1 shows how to initialize GPIO.

Note:	GPIO = PORTA
	TRISIO = TRISA

Reading the GPIO register (Register 5-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. GP3 reads '0' when MCLRE = 1.

The TRISIO register controls the direction of the GPIO pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0' and cannot generate an interrupt.

EXAMPLE 5-1: INITIALIZING GPIO

BANKSEL	GPIO	;
CLRF	GPIO	;Init GPIO
BANKSEL	ANSEL	;
CLRF	ANSEL	;digital I/O, ADC clock
		<pre>;setting `don't care'</pre>
MOVLW	0Ch	;Set GP<3:2> as inputs
MOVWF	TRISIO	;and set GP<5:4,1:0>
		;as outputs

REGISTER 5-1: GPIO: GPIO REGISTER

U-0	U-0	R/W-x	R/W-x	R-x	R/W-x	R/W-x	R/W-x
_	_	GP5	GP4	GP3	GP2	GP1	GP0
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
R = Readable bit					,		

bit 7-6	Unimplemented:	Read as '0'
---------	----------------	-------------

bit 5-0 **GP<5:0>**: GPIO I/O Pin bit

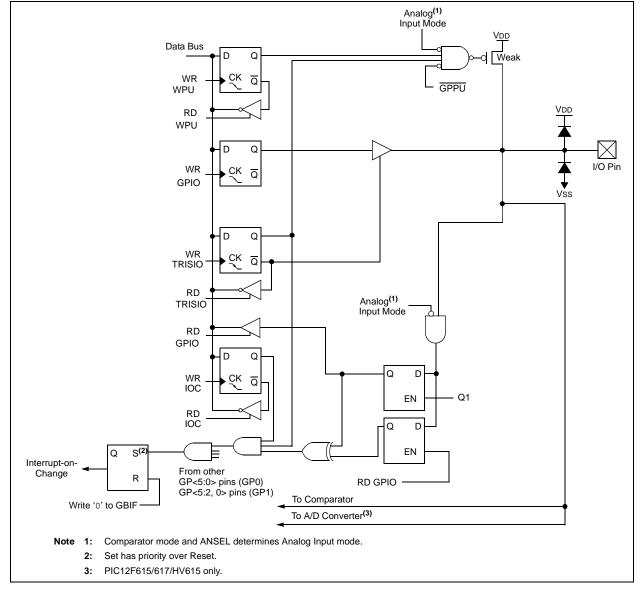
1 = GPIO pin is > VIH 0 = GPIO pin is < VIL

5.2.4 PIN DESCRIPTIONS AND DIAGRAMS

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet.

5.2.4.1 GP0/AN0⁽¹⁾/CIN+/P1B⁽¹⁾/ICSPDAT

Figure 5-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog non-inverting input to the comparator
- a PWM output⁽¹⁾
- In-Circuit Serial Programming data

5.2.4.2 GP1/AN1⁽¹⁾/CIN0-/VREF⁽¹⁾/ICSPCLK

Figure 5-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog inverting input to the comparator
- a voltage reference input for the ADC⁽¹⁾
- In-Circuit Serial Programming clock

Note 1: PIC12F615/617/HV615 only.

FIGURE 5-1: BLOCK DIAGRAM OF GP<1:0>

NOTES:

7.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Optional LP oscillator
- Synchronous or asynchronous operation
- Timer1 gate (count enable) via comparator or $\overline{\text{T1G}}$ pin
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with ECCP)
- Comparator output synchronization to Timer1 clock

Figure 7-1 is a block diagram of the Timer1 module.

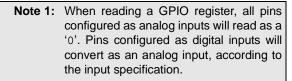
7.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

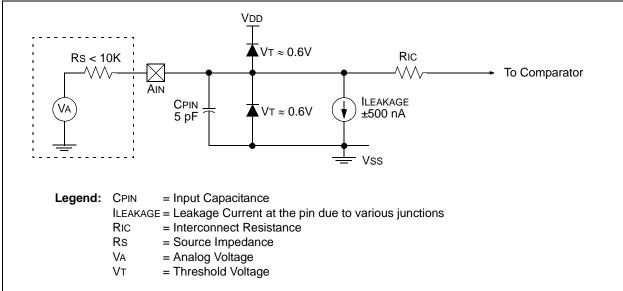
When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter.

7.2 Clock Source Selection

The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally.


Clock Source	TMR1CS	T1ACS
Fosc/4	0	0
Fosc	0	1
T1CKI pin	1	x

9.2 Analog Input Connection Considerations


A simplified circuit for an analog input is shown in Figure 9-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

FIGURE 9-3: ANALOG INPUT MODEL

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

12.3.1 POWER-ON RESET (POR)

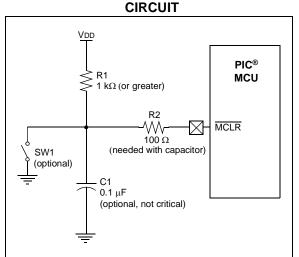
The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See **Section 16.0** "**Electrical Specifications**" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 12.3.4** "**Brown-out Reset (BOR)**").

Note: The POR circuit does not produce an internal Reset when VDD declines. To reenable the POR, VDD must reach Vss for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

12.3.2 MCLR


PIC12F609/615/617/12HV609/615 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the GP3/MCLR pin becomes an external Reset input. In this mode, the GP3/MCLR pin has a weak pull-up to VDD.

FIGURE 12-2: RECOMMENDED MCLR

12.3.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from an internal RC oscillator. For more information, see **Section 4.4** "**Internal Clock Modes**". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip due to:

- VDD variation
- Temperature variation
- Process variation

See DC parameters for details (Section 16.0 "Electrical Specifications").

Note:	Voltage spikes below Vss at the MCLR
	pin, inducing currents greater than 80 mA,
	may cause latch-up. Thus, a series resis-
	tor of 50-100 Ω should be used when
	applying a "low" level to the MCLR pin,
	rather than pulling this pin directly to Vss.

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.			

INCFSZ	Increment f, Skip if 0				
Syntax:	[label] INCFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.				

GOTO	Unconditional Branch				
Syntax:	[<i>label</i>] GOTO k				
Operands:	$0 \leq k \leq 2047$				
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<4:3> $\rightarrow PC < 12:11>$				
Status Affected:	None				
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.				

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

16.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +6.5V
Voltage on MCLR with respect to Vss	-0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	95 mA
Maximum current into Vod pin	95 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by GPIO	90 mA
Maximum current sourced GPIO	90 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VD IOL).	⊡ – Vон) х Iон} + ∑(Vol х

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

16.2 DC Characteristics: PIC12F609/615/617-I (Industrial) PIC12F609/615/617-E (Extended)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param Device Characteristics		Min	Тур†	Max	Units	Conditions	
No.	Device Characteristics		וקעי	IVIAN	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)		13	25	μA	2.0	Fosc = 32 kHz
	PIC12F609/615/617		19	29	μA	3.0	LP Oscillator mode
			32	51	μA	5.0	
D011*			135	225	μA	2.0	Fosc = 1 MHz
			185	285	μA	3.0	XT Oscillator mode
		_	300	405	μA	5.0	
D012		—	240	360	μA	2.0	Fosc = 4 MHz
			360	505	μA	3.0	XT Oscillator mode
			0.66	1.0	mA	5.0	
D013*			75	110	μA	2.0	Fosc = 1 MHz
			155	255	μA	3.0	EC Oscillator mode
			345	530	μA	5.0	
D014			185	255	μA	2.0	Fosc = 4 MHz
			325	475	μA	3.0	EC Oscillator mode
			0.665	1.0	mA	5.0	
D016*			245	340	μA	2.0	Fosc = 4 MHz
			360	485	μA	3.0	INTOSC mode
			0.620	0.845	mA	5.0	
D017			395	550	μA	2.0	Fosc = 8 MHz
			0.620	0.850	mA	3.0	INTOSC mode
			1.2	1.6	mA	5.0	
D018			175	235	μA	2.0	Fosc = 4 MHz
			285	390	μA	3.0	EXTRC mode ⁽³⁾
		—	530	750	μA	5.0	
D019		_	2.2	3.1	mA	4.5	Fosc = 20 MHz HS Oscillator mode
			2.8	3.35	mA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-torail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in KOhms (KΩ).

16.5 DC Characteristics: PIC12F609/615/617 - E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param Device Characteristics		Min	Turt		Unite	Conditions		
No.	Device Characteristics	WIIN	Тур†	Max	Units	Vdd	Note	
D020E	Power-down Base	_	0.05	4.0	μΑ	2.0	WDT, BOR, Comparator, VREF and	
	Current (IPD) ⁽²⁾	—	0.15	5.0	μΑ	3.0	T1OSC disabled	
	PIC12F609/615/617	_	0.35	8.5	μΑ	5.0		
D021E		—	0.5	5.0	μΑ	2.0	WDT Current ⁽¹⁾	
		—	2.5	8.0	μΑ	3.0		
		_	9.5	19	μΑ	5.0		
D022E		_	5.0	15	μΑ	3.0	BOR Current ⁽¹⁾	
		—	6.0	19	μΑ	5.0		
D023E		_	50	70	μΑ	2.0	Comparator Current ⁽¹⁾ , single	
		—	55	75	μΑ	3.0	comparator enabled	
		—	60	80	μΑ	5.0		
D024E		_	30	40	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)	
		—	45	60	μΑ	3.0		
		—	75	105	μΑ	5.0		
D025E*		—	39	50	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)	
		—	59	80	μΑ	3.0		
		—	98	130	μΑ	5.0		
D026E		_	5.5	16	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz	
		_	7.0	18	μΑ	3.0		
		_	8.5	22	μΑ	5.0		
D027E		—	0.2	6.5	μA	3.0	A/D Current ⁽¹⁾ , no conversion in	
		_	0.36	10	μΑ	5.0	progress	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

*

TABLE 16-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

	r d Opera ng Tempe	ting Conditions (unless otherwi erature -40°C ≤ TA ≤ +125°C	se state	ed)			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 5	_		μs μs	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	20 20	30 35	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C
32	Тоѕт	Oscillation Start-up Timer Period ^(1, 2)		1024	—	Tosc	(NOTE 3)
33*	TPWRT	Power-up Timer Period	40	65	140	ms	
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.0	μs	
35	VBOR	Brown-out Reset Voltage	2.0	2.15	2.3	V	(NOTE 4)
36*	VHYST	Brown-out Reset Hysteresis		100	—	mV	
37*	TBOR	Brown-out Reset Minimum Detection Period	100	—	_	μS	$VDD \leq VBOR$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - **3:** Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 16-11: PIC12F615/617/HV615 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
AD01	Nr	Resolution	_	_	10 bits	bit	
AD02	EIL	Integral Error	—	_	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD03	Edl	Differential Error	_	—	±1	LSb	No missing codes to 10 bits VREF = 5.12V ⁽⁵⁾
AD04	EOFF	Offset Error		+1.5	+2.0	LSb	Vref = 5.12V ⁽⁵⁾
AD07	Egn	Gain Error		_	±1	LSb	VREF = 5.12V ⁽⁵⁾
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	_	— Vdd	V	Absolute minimum to ensure 1 LSb accuracy
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ	
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN.
					50	μA	During A/D conversion cycle.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

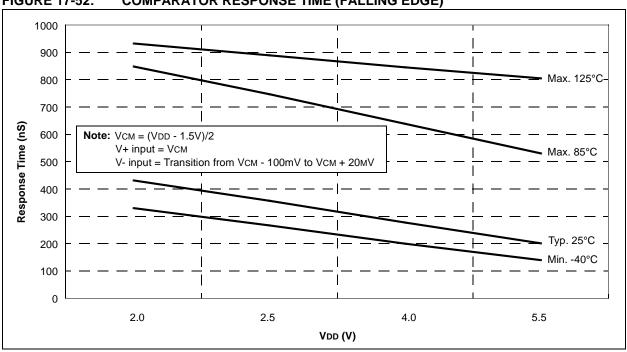
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.
- 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: VREF = 5V for PIC12HV615.

16.12 High Temperature Operation

This section outlines the specifications for the <u>PIC12F615</u> device operating in a temperature range <u>between -40°C and 150°C</u>.⁽⁴⁾ The specifications between -40°C and 150°C⁽⁴⁾ are identical to those shown in DS41288 and DS80329.


Note 1:	Writes are <u>not allowed</u> for Flash Program Memory above 125°C.			
2:	All AC timing specifications are increased by 30%. This derating factor will include parameters such as TPWRT.			
3:	The temperature range indicator in the part number is "H" for -40°C to 150°C. ⁽⁴⁾			
Example: PIC12F615T-H/ST indicates the device is shipped in a TAPE and reel configuration, in the MSOP package, and is rated for operation from -40°C to 150°C. ⁽⁴⁾				
4:	AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total oper- ating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from			

Microchip Technology Inc.

Parameter	Source/Sink	Value	Units
Max. Current: VDD	Source	20	mA
Max. Current: Vss	Sink	50	mA
Max. Current: PIN	Source	5	mA
Max. Current: PIN	Sink	10	mA
Pin Current: at VOH	Source	3	mA
Pin Current: at VoL	Sink	8.5	mA
Port Current: GPIO	Source	20	mA
Port Current: GPIO	Sink	50	mA
Maximum Junction Temperature		155	°C

TABLE 16-13: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

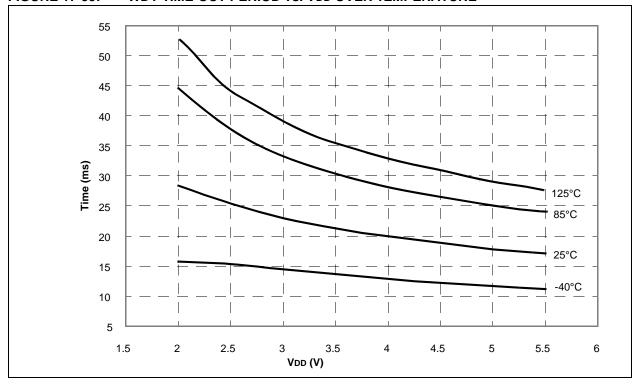


FIGURE 17-52: COMPARATOR RESPONSE TIME (FALLING EDGE)

RLF	136
RRF	136
SLEEP	
SUBLW	136
SUBWF	
SWAPF	
XORLW	
XORWF	
Summary Table	
INTCON Register	
Internal Oscillator Block	
INTOSC	
Specifications	157. 158
Internal Sampling Switch (Rss) Impedance	
Internet Address	
Interrupts	
ADC	
Associated Registers	
Context Saving	
GP2/INT	
GPIO Interrupt-on-Change	
Interrupt-on-Change	
Timer0	
TMR1	
INTOSC Specifications	
IOC Register	

L

Load Conditions155

Μ

MCLR 111
Internal111
Memory Organization11
Data11
Program11
Microchip Internet Web Site
Migrating from other PICmicro Devices 203
MPLAB ASM30 Assembler, Linker, Librarian 140
MPLAB ICD 2 In-Circuit Debugger 141
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator 141
MPLAB Integrated Development Environment Software 139
MPLAB PM3 Device Programmer141
MPLAB REAL ICE In-Circuit Emulator System 141
MPLINK Object Linker/MPLIB Object Librarian 140

0

OPCODE Field Descriptions	
Operation During Code Protect	
Operation During Write Protect	
Operational Amplifier (OPA) Module	
AC Specifications	
OPTION Register	19
OPTION_REG Register	
Oscillator	
Associated registers	41, 63
Oscillator Module	
EC	
HS	
INTOSC	
INTOSCIO	
LP	
RC	
RCIO	
XT	

Oscillator Parameters
Oscillator Start-up Timer (OST)
Specifications
USCIUNE Register
Р
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/
PWM (ECCP)
Packaging
Marking 195
PDIP Details 196
PCL and PCLATH25
Stack
PCON Register
PICSTART Plus Development Programmer
PIE1 Register
Pin Diagram
PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)
PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN) 5
Pinout Descriptions
PIC12F609/12HV609
PIC12F615/617/12HV615 10
PIR1 Register
PMADRH and PMADRL Registers
PMCON1 and PMCON2 Registers
Power-Down Mode (Sleep)
Power-on Reset (POR) 111
Power-up Timer (PWRT) 111
Specifications 160
Precision Internal Oscillator Parameters 158
Prescaler
Shared WDT/Timer054
Switching Prescaler Assignment54
Program Memory 11
Map and Stack 11
Programming, Device Instructions
Protection Against Spurious Write
PWM Mode. See Enhanced Capture/Compare/PWM 97
PWM1CON Register
D

R

Reader Response
Reading the Flash Program Memory 30
Read-Modify-Write Operations 129
Registers
ADCON0 (ADC Control 0) 84
ADRESH (ADC Result High) with ADFM = 0) 85
ADRESH (ADC Result High) with ADFM = 1) 85
ADRESL (ADC Result Low) with ADFM = 0) 85
ADRESL (ADC Result Low) with ADFM = 1) 85
ANSEL (Analog Select) 45
APFCON (Alternate Pin Function Register) 24
CCP1CON (Enhanced CCP1 Control) 89
CMCON0 (Comparator Control 0) 72
CMCON1 (Comparator Control 1) 73
CONFIG (Configuration Word) 108
Data Memory Map (PIC12F609/HV609) 12
Data Memory Map (PIC12F615/617/HV615) 13
ECCPAS (Enhanced CCP Auto-shutdown Control). 102
EEDAT (EEPROM Data) 28
EEDATH (EEPROM Data) 28
GPIO 43
INTCON (Interrupt Control) 20
IOC (Interrupt-on-Change GPIO) 46
OPTION_REG (OPTION) 19