

Welcome to E-XFL.COM

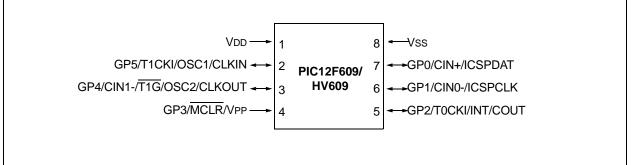
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv615-e-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Program Memory	Data Memory	Self Read/	1/0	10-bit A/D	Comparators	ECCP	Timers	Voltago Bango
Device	Flash (words)	SRAM (bytes)	Self Write	elf Write		Comparators	ECCP	8/16-bit	Voltage Range
PIC12F609	1024	64	—	5	0	1	_	1/1	2.0V-5.5V
PIC12HV609	1024	64	—	5	0	1		1/1	2.0V-user defined
PIC12F615	1024	64	—	5	4	1	YES	2/1	2.0V-5.5V
PIC12HV615	1024	64	—	5	4	1	YES	2/1	2.0V-user defined
PIC12F617	2048	128	YES	5	4	1	YES	2/1	2.0V-5.5V

8-Pin Diagram, PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)

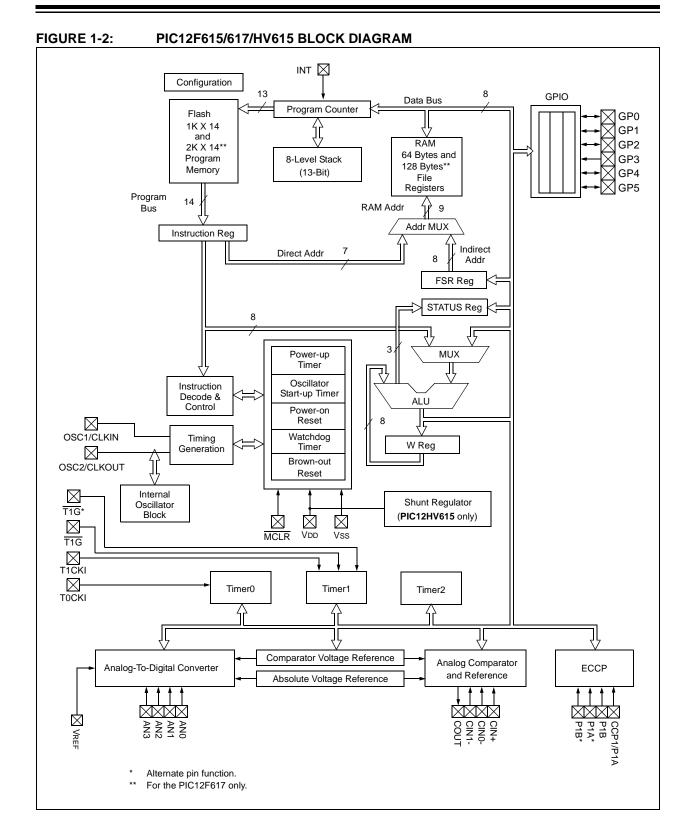


TABLE 1: PIC12F609/HV609 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Comparators	Timer	Interrupts	Pull-ups	Basic
GP0	7	CIN+	_	IOC	Y	ICSPDAT
GP1	6	CIN0-	—	IOC	Y	ICSPCLK
GP2	5	COUT	TOCKI	INT/IOC	Y	—
GP3 ⁽¹⁾	4	_		IOC	Y(2)	MCLR/VPP
GP4	3	CIN1-	T1G	IOC	Y	OSC2/CLKOUT
GP5	2	—	T1CKI	IOC	Y	OSC1/CLKIN
_	1	-		_		Vdd
	8	_	_	_	_	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 2-1:

the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

STATUS: STATUS REGISTER

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 14.0 "Instruction Set Summary".

- Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F609/615/617/ 12HV609/615 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: This bit is reserved and should be maintained as '0'
bit 6	RP1: This bit is reserved and should be maintained as '0'
bit 5	RP0: Register Bank Select bit (used for direct addressing)
	1 = Bank 1 (80h – FFh) 0 = Bank 0 (00h – 7Fh)
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions), For Borrow, the polarity is reversed.
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions)
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the

Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the Note 1: second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

2.2.2.4 PIE1 Register

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	—	TMR2IE ⁽¹⁾	TMR1IE
bit 7							bit 0

Legend:							
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	-	emented: Read as '0'					
bit 6	ADIE: A	D Converter (ADC) Interrupt	Enable bit ⁽¹⁾				
	 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt 						
bit 5	CCP1IE	CCP1 Interrupt Enable bit ⁽¹⁾)				
		bles the CCP1 interrupt bles the CCP1 interrupt					
bit 4	Unimple	Unimplemented: Read as '0'					
bit 3	CMIE: C	CMIE: Comparator Interrupt Enable bit					
		bles the Comparator interrupt bles the Comparator interrup					
bit 2	Unimple	mented: Read as '0'					
bit 1	TMR2IE	Timer2 to PR2 Match Interr	upt Enable bit ⁽¹⁾				
	 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt 						
bit 0	TMR1IE	Timer1 Overflow Interrupt E	nable bit				
		bles the Timer1 overflow inter bles the Timer1 overflow inte	•				
Note 1:	PIC12F615/6	617/HV615 only. PIC12F609/	HV609 unimplemented, read	as '0'.			

NOTES:

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1
—	—	—	—	ANS3	—	ANS1	ANS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	ANS3: Analog Select Between Analog or Digital Function on Pin GP4 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
bit 2	Unimplemented: Read as '0'
bit 1	 ANS1: Analog Select Between Analog or Digital Function on Pin GP1 1 = Analog input. Pin is assigned as analog input.⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or special function.
bit 0	 ANS0: Analog Select Between Analog or Digital Function on Pin GP0 0 = Digital I/O. Pin is assigned to port or special function. 1 = Analog input. Pin is assigned as analog input.⁽¹⁾

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-onchange if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

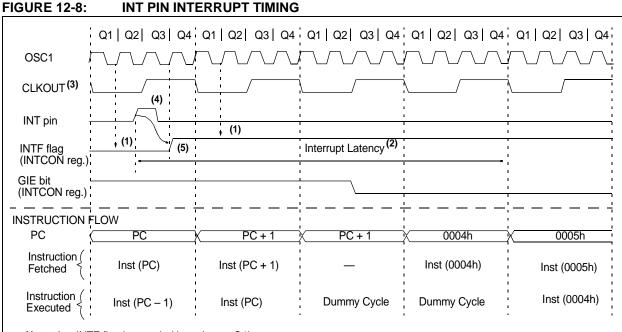
REGISTER 5-4: ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615)

U-0	R/W-1						
—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented : Read as '0'
bit 6-4	ADCS<2:0>: A/D Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32
	x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64
bit 3-0	ANS<3:0> : Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
Note 1:	Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on- change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

NOTES:


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
oit 7							bit				
Legend:											
R = Readab		W = Writable		-	nented bit, rea	d as '0'					
n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown				
oit 7	Unimplemen	ted: Read as '	0'								
oit 6-3	TOUTPS<3:0)>: Timer2 Output	out Postscaler	Select bits							
	0000 =1:1 Po										
		0001 =1:2 Postscaler									
		010 =1:3 Postscaler									
		0011 =1:4 Postscaler									
		0100 =1:5 Postscaler 0101 =1:6 Postscaler									
		0101 = 1.6 Postscaler									
	0111 =1:8 Pc										
	1000 =1:9 Po	1000 =1:9 Postscaler									
	1001 =1:10 F	1001 =1:10 Postscaler									
	1010 =1:11 Postscaler										
	1011 =1:12 Postscaler										
	1100 =1:13 Postscaler										
		1101 =1:14 Postscaler 1110 =1:15 Postscaler									
	1110 = 1:16 Postscaler										
oit 2											
511 2		TMR2ON: Timer2 On bit 1 = Timer2 is on									
	0 = Timer2 is										
oit 1-0	T2CKPS<1:0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits									
	00 =Prescale	eris 1									
	01 =Prescale										
	1x =Prescale	ric 16									

REGISTER 8-1: T2CON: TIMER 2 CONTROL REGISTER

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	_	CMIE	_	TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-00-0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-00-0-00
PR2 ⁽¹⁾	Timer2 Module Period Register							1111 1111	1111 1111	
TMR2 ⁽¹⁾	Holding Register for the 8-bit TMR2 Register 0000 0000 0000 0000						0000 0000			
T2CON ⁽¹⁾	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

Legend:x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.Note1:For PIC12F615/617/HV615 only.

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 16.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

TABLE 12-7: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC		_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	—	CMIF	_	TMR2IF ⁽¹⁾	TMR1IF	-00- 0-00	-000 0-00
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	—	CMIE		TMR2IE ⁽¹⁾	TMR1IE	-00- 0-00	-000 0-00

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

Note 1: PIC12F615/617/HV615 only.

NOTES:

14.0 INSTRUCTION SET SUMMARY

The PIC12F609/615/617/12HV609/615 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 14-1, while the various opcode fields are summarized in Table 14-1.

Table 14-2 lists the instructions recognized by the $MPASM^{TM}$ assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

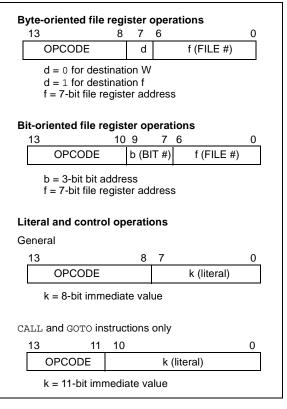
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

14.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF GPIO instruction will read GPIO, clear all the data bits, then write the result back to GPIO. This example would have the unintended consequence of clearing the condition that set the GPIF flag.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

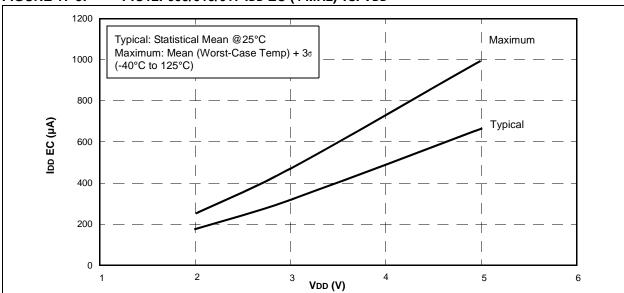
CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

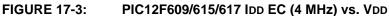
COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (destination)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			

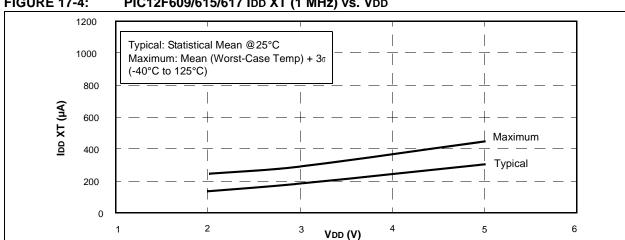
CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{(W)} \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

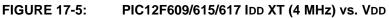
DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

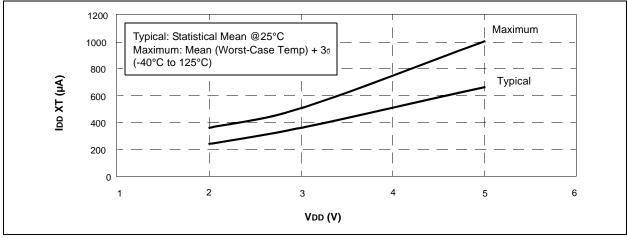

16.9 Thermal Considerations

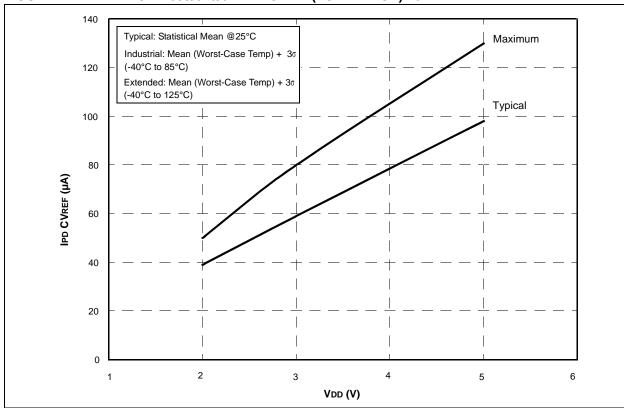

Param No.	Sym	Characteristic	Тур	Units	Conditions
TH01	θJA	Thermal Resistance	84.6*	C/W	8-pin PDIP package
		Junction to Ambient	149.5*	C/W	8-pin SOIC package
			211*	C/W	8-pin MSOP package
			60*	C/W	8-pin DFN 3x3mm package
			44*	C/W	8-pin DFN 4x4mm package
TH02	θJC	Thermal Resistance	41.2*	C/W	8-pin PDIP package
		Junction to Case	39.9*	C/W	8-pin SOIC package
			39*	C/W	8-pin MSOP package
			9*	C/W	8-pin DFN 3x3mm package
		3.0*	C/W	8-pin DFN 4x4mm package	
TH03	TDIE	Die Temperature	150*	С	
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD (NOTE 1)
TH06	Pi/o	I/O Power Dissipation	—	W	$\begin{array}{l} PI/O = \Sigma \ (IOL \ ^* \ VOL) + \Sigma \ (IOH \ ^* \ (VDD - VOH)) \end{array}$
TH07	Pder	Derated Power	—	W	Pder = PDmax (Tdie - Ta)/θja (NOTE 2)

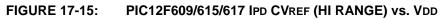

* These parameters are characterized but not tested.

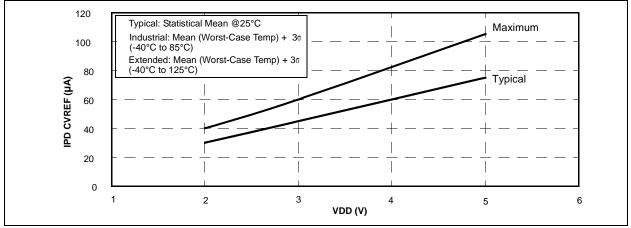

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

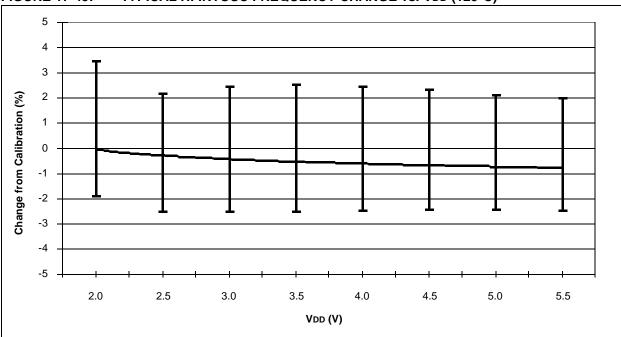

2: T_A = Ambient temperature.

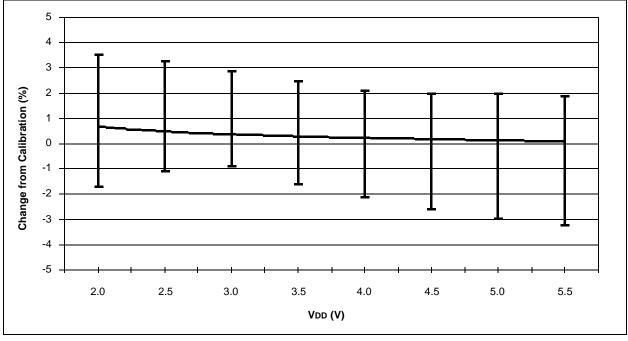


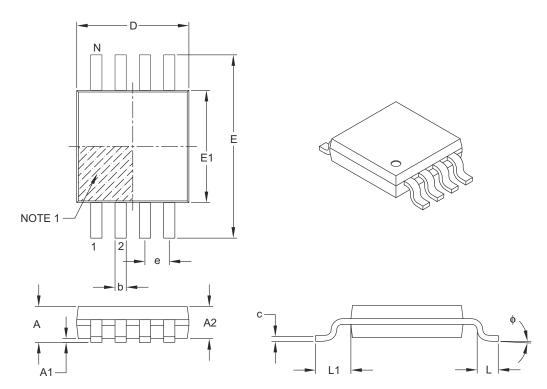








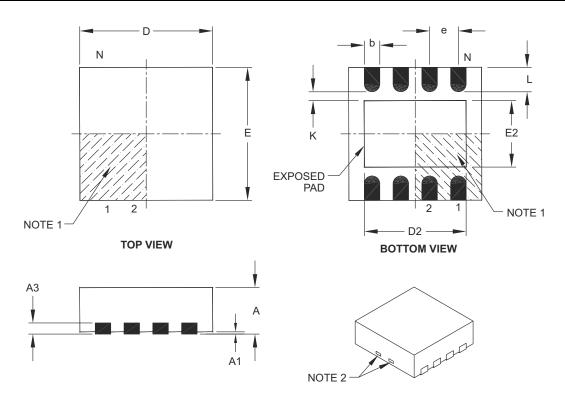



FIGURE 17-45: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
	Dimension Limits		NOM	MAX			
Number of Pins	N	8					
Pitch	е	0.65 BSC					
Overall Height	A	-	-	1.10			
Molded Package Thickness	A2	0.75	0.85	0.95			
Standoff	A1	0.00	-	0.15			
Overall Width	E	4.90 BSC					
Molded Package Width	E1	3.00 BSC					
Overall Length	D	3.00 BSC					
Foot Length	L	0.40	0.60	0.80			
Footprint	L1	0.95 REF					
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.08	-	0.23			
Lead Width	b	0.22	-	0.40			


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111B

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

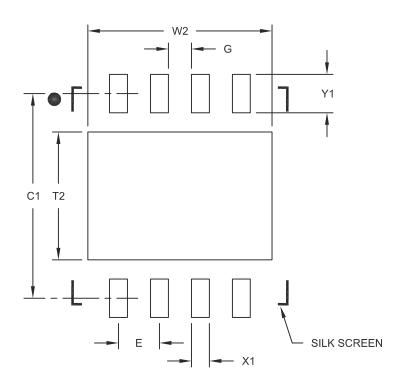
	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е		0.80 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	4.00 BSC			
Exposed Pad Width	E2	0.00 2.20 2.80			
Overall Width	E	4.00 BSC			
Exposed Pad Length	D2	0.00	3.00	3.60	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-131D

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E			
Optional Center Pad Width	W2			3.60
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		4.00	
Contact Pad Width (X8)	X1			0.35
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2131B

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10