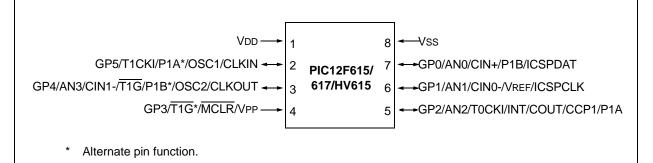


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12hv615-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN)

TABLE 2: PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)

I/O	Pin	Analog	Comparator s	Timer	ССР	Interrupts	Pull-ups	Basic
GP0	7	AN0	CIN+	_	P1B	IOC	Y	ICSPDAT
GP1	6	AN1	CIN0-	—	—	IOC	Y	ICSPCLK/VREF
GP2	5	AN2	COUT	T0CKI	CCP1/P1A	INT/IOC	Y	—
GP3 ⁽¹⁾	4		—	T1G*	_	IOC	Y(2)	MCLR/Vpp
GP4	3	AN3	CIN1-	T1G	P1B*	IOC	Y	OSC2/CLKOUT
GP5	2	-	—	T1CKI	P1A*	IOC	Y	OSC1/CLKIN
—	1	—	—	—	—	—	—	Vdd
—	8		—	_	_	_	—	Vss

* Alternate pin function.

Note 1: Input only.

2: Only when pin is configured for external MCLR.

Name	Function	Input Type	Output Type	Description
GP0/CIN+/ICSPDAT	GP0	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	CIN+	AN	—	Comparator non-inverting input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
GP1/CIN0-/ICSPCLK	GP1	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	CIN0-	AN	—	Comparator inverting input
	ICSPCLK	ST	_	Serial Programming Clock
GP2/T0CKI/INT/COUT	GP2	ST	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	TOCKI	ST	—	Timer0 clock input
	INT	ST	_	External Interrupt
	COUT	—	CMOS	Comparator output
GP3/MCLR/Vpp	GP3	TTL	_	General purpose input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	ΗV	—	Programming voltage
GP4/CIN1-/T1G/OSC2/	GP4	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
CLKOUT	CIN1-	AN	—	Comparator inverting input
	T1G	ST	_	Timer1 gate (count enable)
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	General purpose I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock input
	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	—	External clock input/RC oscillator connection
Vdd	Vdd	Power	_	Positive supply
Vss	Vss	Power	_	Ground reference

PIC12F609/HV609 PINOUT DESCRIPTION **TABLE 1-1:**

Legend: AN=Analog input or output ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input

CMOS = CMOS compatible input or output HV= High Voltage XTAL=Crystal

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)						gister)	xxxx xxxx	25, 116
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	ounter's (PC)	Least Signifi	icant Byte					0000 0000	25, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Data	a Memory Ac	Idress Pointe	er					xxxx xxxx	25, 116
85h	TRISIO			TRISIO5	TRISIO4	TRISIO3 ⁽⁴⁾	TRISIO2	TRISIO1	TRISIO0	11 1111	44, 116
86h	_	Unimplemen	nted							_	_
87h	_	Unimplemen	nted							_	_
88h	_	Unimplemen	nted							_	_
89h	_	Unimplemen	nted							—	—
8Ah	PCLATH	_	_	_	Writ	e Buffer for u	pper 5 bits of	Program Cou	unter	0 0000	25, 116
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF ⁽³⁾	0000 0000	20, 116
8Ch	PIE1	_	ADIE	CCP1IE	_	CMIE	_	TMR2IE	TMR1IE	-00- 0-00	21, 116
8Dh	_	Unimplemer	nted							—	—
8Eh	PCON	_	—	—	—	_	—	POR	BOR	dd	23, 116
8Fh	_	Unimplemen	nted							_	_
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	41, 116
91h	_	Unimplemen	nted							_	_
92h	PR2	Timer2 Mod	ule Period R	egister						1111 1111	65, 116
93h	APFCON	_	_	_	T1GSEL	_	_	P1BSEL	P1ASEL	000	21, 116
94h	_	Unimplemen	nted							_	_
95h	WPU ⁽²⁾	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	46, 116
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	46, 116
97h	_	Unimplemen	nted							_	_
98h	PMCON1 ⁽⁷⁾	_	—	—	—	_	WREN	WR	RD	000	29
99h	PMCON2 ⁽⁷⁾	Program Me	emory Contro	l Register 2	(not a physic	al register).					—
9Ah	PMADRL ⁽⁷⁾	PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRL0	0000 0000	28
9Bh	PMADRH ⁽⁷⁾	_	_	_	—	_	PMADRH2	PMADRH1	PMADRH0	000	28
9Ch	PMDATL ⁽⁷⁾	PMDATL7	PMDATL6	PMDATL5	PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATL0	0000 0000	28
9Dh	PMDATH ⁽⁷⁾	—	— Program Memory Data Register High Byte.							00 0000	28
9Eh	ADRESL ^(5, 6)	Least Signif	icant 2 bits o	f the left shift	ed result or 8	bits of the rig	ght shifted res	sult		xxxx xxxx	85, 117
9Fh	ANSEL	—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	45, 117
Logon			sations road :			l		l	1	1	·

TABLE 2-4: PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. GP3 pull-up is enabled when MCLRE is '1' in the Configuration Word register. Legend: Note 1:

2:

MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch 3: exists.

TRISIO3 always reads as '1' since it is an input only pin. 4:

Read only register. 5:

PIC12F615/617/HV615 only. 6:

7: PIC12F617 only.

2.2.2.5 PIR1 Register

The PIR1 register contains the Peripheral Interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	_	CMIF	—	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Interrupt Flag bit ⁽¹⁾
	1 = A/D conversion complete
	0 = A/D conversion has not completed or has not been started
bit 5	CCP1IF: CCP1 Interrupt Flag bit ⁽¹⁾
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	<u>Compare mode</u> : 1 = A TMR1 register compare match occurred (must be cleared in software)
	0 = No TMR1 register compare match occurred
	<u>PWM mode</u> :
	Unused in this mode
bit 4	Unimplemented: Read as '0'
bit 3	CMIF: Comparator Interrupt Flag bit
	1 = Comparator output has changed (must be cleared in software)
	0 = Comparator output has not changed
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit ⁽¹⁾
	 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Timer1 register overflowed (must be cleared in software)
	0 = Timer1 has not overflowed

Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as '0'.

2.2.2.6 PCON Register

The Power Control (PCON) register (see Table 12-2) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the software enable of the $\overline{\text{BOR}}.$

The PCON register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 ⁽¹⁾
—	—	—	_	-	-	POR	BOR
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7-2	7-2 Unimplemented: Read as '0'				
bit 1	POR: Po	POR: Power-on Reset Status bit			
	1 = No Power-on Reset occurred				
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)				
bit 0	BOR: Br	BOR: Brown-out Reset Status bit			

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Note 1: Reads as '0' if Brown-out Reset is disabled.

7.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler.

7.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source.

In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after one or more of the following conditions:

- Timer1 is enabled after POR or BOR Reset
- A write to TMR1H or TMR1L
- T1CKI is high when Timer1 is disabled and when Timer1 is re-enabled T1CKI is low. See Figure 7-2.

7.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

7.4 Timer1 Oscillator

A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when in LP oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up.

TRISIO5 and TRISIO4 bits are set when the Timer1 oscillator is enabled. GP5 and GP4 bits read as '0' and TRISIO5 and TRISIO4 bits read as '1'.

Note:	The oscillator requires a start-up and
	stabilization time before use. Thus,
	T1OSCEN should be set and a suitable
	delay observed prior to enabling Timer1.

7.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 7.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

- Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce a single spurious increment.
- Note: In asynchronous counter mode or when using the internal oscillator and T1ACS=1, Timer1 can not be used as a time base for the capture or compare modes of the ECCP module (for PIC12F615/617/ HV615 only).

7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TTMR1L register pair.

7.6 Timer1 Gate

Timer1 gate source is software configurable to be the T1G pin (or the alternate T1G pin) or the output of the Comparator. This allows the device to directly time external events using T1G or analog events using the Comparator. See the CMCON1 Register (Register 9-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on Delta-Sigma A/D converters, see the Microchip web site (www.microchip.com).

Note: TMR1GE bit of the T1CON register must be set to use either T1G or COUT as the Timer1 gate source. See Register 9-2 for more information on selecting the Timer1 gate source.

Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or the Comparator output. This configures Timer1 to measure either the active-high or active-low time between events.

7.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- Timer1 interrupt enable bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

7.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set

The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

7.9 ECCP Capture/Compare Time Base (PIC12F615/617/HV615 only)

The ECCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 11.0 "Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only)".

8.0 TIMER2 MODULE (PIC12F615/617/HV615 ONLY)

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 8-1 for a block diagram of Timer2.

8.1 Timer2 Operation

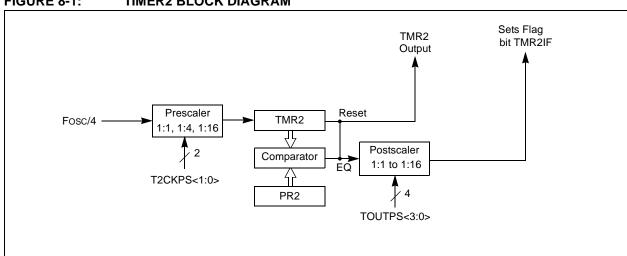
The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 8-1:	TIMER2 BLOCK DIAGRAM


The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

9.3 Comparator Control

The comparator has two control and Configuration registers: CMCON0 and CMCON1. The CMCON1 register is used for controlling the interaction with Timer1 and simultaneously reading the comparator output.

The CMCON0 register (Register 9-1) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- · Output selection
- Output polarity

9.3.1 COMPARATOR ENABLE

Setting the CMON bit of the CMCON0 register enables the comparator for operation. Clearing the CMON bit disables the comparator for minimum current consumption.

9.3.2 COMPARATOR INPUT SELECTION

The CMCH bit of the CMCON0 register directs one of four analog input pins to the comparator inverting input.

Note: To use CIN+ and CIN- pins as analog inputs, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

9.3.3 COMPARATOR REFERENCE SELECTION

Setting the CMR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 9.10 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

9.3.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the COUT bit of the CMCON0 register. In order to make the output available for an external connection, the following conditions must be true:

- CMOE bit of the CMxCON0 register must be set
- Corresponding TRIS bit must be cleared
- CMON bit of the CMCON0 register must be set.

Note 1:	The CMOE bit overrides the PORT data			
	latch. Setting the CMON has no impact			
	on the port override.			

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

9.3.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CMPOL bit of the CMCON0 register. Clearing CMPOL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 9-1.

Input Conditions	CMPOL	COUT		
CMVIN- > CMVIN+	0	0		
CMVIN- < CMVIN+	0	1		
CMVIN- > CMVIN+	1	1		
CMVIN- < CMVIN+	1	0		

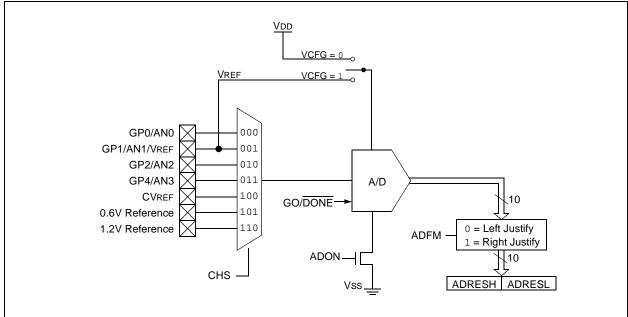
TABLE 9-1: OUTPUT STATE VS. INPUT CONDITIONS

Note: COUT refers to both the register bit and output pin.

9.4 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See **Section 16.0 "Electrical Specifications"** for more details.

10.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE (PIC12F615/617/HV615 ONLY)


The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 10-1 shows the block diagram of the ADC.

FIGURE 10-1: ADC BLOCK DIAGRAM

Note: The ADRESL and ADRESH registers are Read Only.

10.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

10.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding port section for more information.

Note:	Analog voltages on any pin that is defined					
	as a digital input may cause the input					
	buffer to conduct excess current.					

10.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 10.2 "ADC Operation"** for more information.

10.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

10.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options:

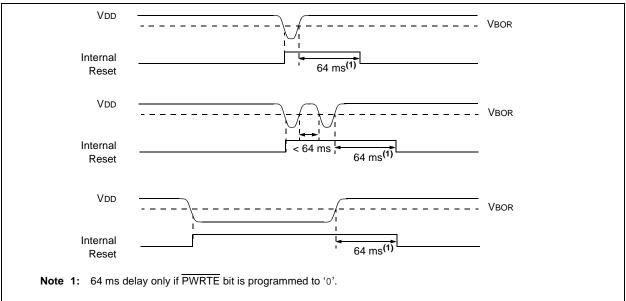
- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 10-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 16.0 "Electrical Specifications"** for more information. Table 10-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

12.3.4 BROWN-OUT RESET (BOR)


The BOREN0 and BOREN1 bits in the Configuration Word register select one of three BOR modes. One mode has been added to allow control of the BOR enable for lower current during Sleep. By selecting BOREN<1:0> = 10, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. See Register 12-1 for the Configuration Word definition.

A brown-out occurs when VDD falls below VBOR for greater than parameter TBOR (see Section 16.0 "Electrical Specifications"). The brown-out condition will reset the device. This will occur regardless of VDD slew rate. A Brown-out Reset may not occur if VDD falls below VBOR for less than parameter TBOR.

On any Reset (Power-on, Brown-out Reset, Watchdog timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 12-3). If enabled, the Power-up Timer will be invoked by the Reset and keep the chip in Reset an additional 64 ms.

Note:	The Power-up Timer is enabled by the
	PWRTE bit in the Configuration Word
	register.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

FIGURE 12-3: BROWN-OUT SITUATIONS

ADDLW	Add literal and W		
Syntax:	[<i>label</i>] ADDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$(W) + k \to (W)$		
Status Affected:	C, DC, Z		
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.		

14.2 Instruction	Descriptions
------------------	--------------

BCF	Bit Clear f		
Syntax:	[label] BCF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$0 \rightarrow (f < b >)$		
Status Affected:	None		
Description:	Bit 'b' in register 'f' is cleared.		

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

BSF	Bit Set f			
Syntax:	[label] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Description:	Bit 'b' in register 'f' is set.			

ANDLW	AND literal with W		
Syntax:	[label] ANDLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .AND. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.		

BTFSC	Bit Test f, Skip if Clear			
Syntax:	[label] BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	skip if (f) = 0			
Status Affected:	None			
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.			

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

16.2 DC Characteristics: PIC12F609/615/617-I (Industrial) PIC12F609/615/617-E (Extended)

DC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param	Device Characteristics	Min	Тур†	Max	Units		Conditions
No.	Device Characteristics		וקעי	IVIAN	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)		13	25	μA	2.0	Fosc = 32 kHz
	PIC12F609/615/617		19	29	μA	3.0	LP Oscillator mode
			32	51	μA	5.0	
D011*			135	225	μA	2.0	Fosc = 1 MHz
			185	285	μA	3.0	XT Oscillator mode
		_	300	405	μA	5.0	
D012		—	240	360	μA	2.0	Fosc = 4 MHz
			360	505	μA	3.0	XT Oscillator mode
			0.66	1.0	mA	5.0	
D013*			75	110	μA	2.0	Fosc = 1 MHz
			155	255	μA	3.0	EC Oscillator mode
			345	530	μA	5.0	
D014			185	255	μA	2.0	Fosc = 4 MHz
			325	475	μA	3.0	EC Oscillator mode
			0.665	1.0	mA	5.0	
D016*			245	340	μA	2.0	Fosc = 4 MHz
			360	485	μA	3.0	INTOSC mode
			0.620	0.845	mA	5.0	
D017			395	550	μA	2.0	Fosc = 8 MHz
			0.620	0.850	mA	3.0	INTOSC mode
			1.2	1.6	mA	5.0	
D018			175	235	μA	2.0	Fosc = 4 MHz
			285	390	μA	3.0	EXTRC mode ⁽³⁾
		—	530	750	μA	5.0	
D019		_	2.2	3.1	mA	4.5	Fosc = 20 MHz HS Oscillator mode
			2.8	3.35	mA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-torail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in KOhms (KΩ).

16.6 DC Characteristics: PIC12HV609/615 - I (Industrial)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param Device Characteristics		Min	Turnt	Мах	Units	Conditions		
No.	Device Characteristics	IVIIII	Тур†	wax	Units	Vdd	Note	
D020	Power-down Base Current (IPD) ^(2,3)	—	135	200	μΑ	2.0	WDT, BOR, Comparator, VREF and T1OSC disabled	
		_	210	280	μΑ	3.0	7	
	PIC12HV609/615	_	260	350	μΑ	4.5		
D021		—	135	200	μΑ	2.0	WDT Current ⁽¹⁾	
		_	210	285	μΑ	3.0		
		_	265	360	μΑ	4.5	1	
D022		—	215	285	μΑ	3.0	BOR Current ⁽¹⁾	
		_	265	360	μΑ	4.5	1	
D023		—	185	270	μΑ	2.0	Comparator Current ⁽¹⁾ , single	
		—	265	350	μΑ	3.0	comparator enabled	
		—	320	430	μΑ	4.5		
D024		—	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)	
		—	255	330	μΑ	3.0		
		_	330	430	μΑ	4.5		
D025*		—	175	245	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)	
		—	275	350	μΑ	3.0		
		—	355	450	μΑ	4.5		
D026		_	140	205	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz	
		_	220	290	μΑ	3.0]	
		—	270	360	μA	4.5		
D027		_	210	280	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in	
		—	260	350	μΑ	4.5	progress	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Shunt regulator is always on and always draws operating current.

16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial) PIC12F609/615/617/12HV609/615-E (Extended)

DC CHARACTERISTICS			Standard Operating Con Operating temperature		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL Input Low Voltage						
		I/O port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 Vdd	V	(NOTE 1)
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports:		_			
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \leq V \text{DD} \leq 5.5 \text{V}$
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(NOTE 1)
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	_	± 0.1	± 1	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		GP3/MCLR ^(3,4)	—	±0.7	± 5	μΑ	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$
D063		OSC1	—	± 0.1	± 5	μA	VSS \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	IPUR	GPIO Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D080		I/O ports	_	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
	Vон	Output High Voltage	Vdd - 0.7	—	—	V	IOH = -2.5mA, VDD = 4.5V, -40°С to +125°С
D090		I/O ports ⁽²⁾	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

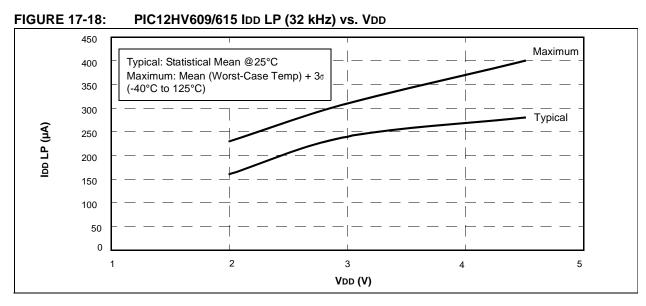
4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.

5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

6: Applies to PIC12F617 only.

16.12 High Temperature Operation

This section outlines the specifications for the <u>PIC12F615</u> device operating in a temperature range <u>between -40°C and 150°C</u>.⁽⁴⁾ The specifications between -40°C and 150°C⁽⁴⁾ are identical to those shown in DS41288 and DS80329.


Note 1:	Writes are <u>not allowed</u> for Flash Program Memory above 125°C.						
2:	 All AC timing specifications are increased by 30%. This derating factor will include parameters such as TPWRT. 						
 The temperature range indicator in part number is "H" for -40°C to 150°C. 							
i	Example: PIC12F615T-H/ST indicates the device is shipped in a TAPE and reel configuration, in the MSOP package, and is rated for operation from -40°C to 150°C. ⁽⁴⁾						
4:	AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total oper- ating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from						

Microchip Technology Inc.

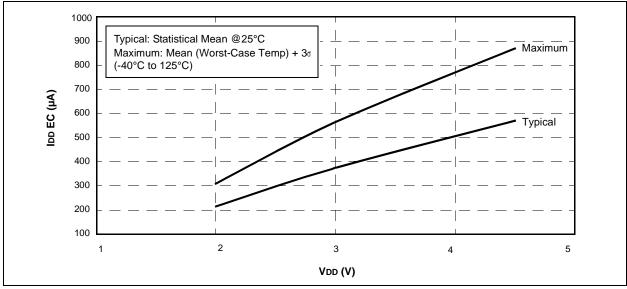
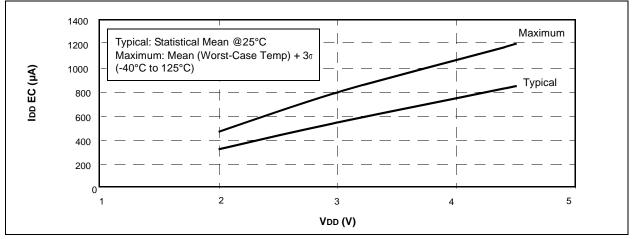
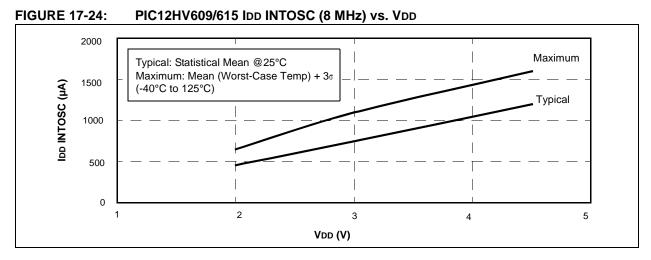
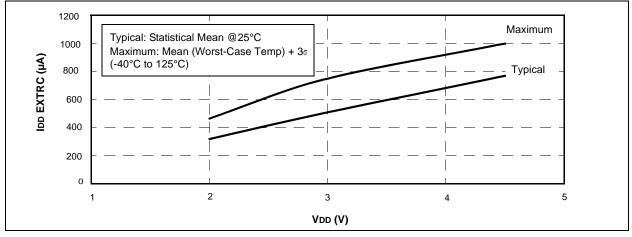
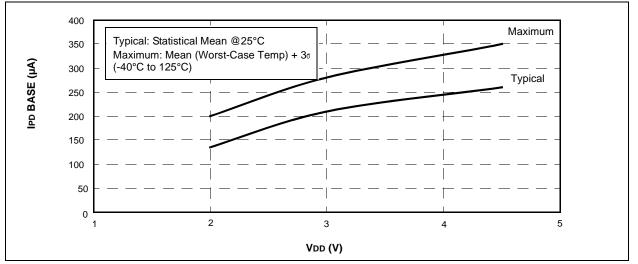

Parameter	Source/Sink	Value	Units
Max. Current: VDD	Source	20	mA
Max. Current: Vss	Sink	50	mA
Max. Current: PIN	Source	5	mA
Max. Current: PIN	Sink	10	mA
Pin Current: at VOH	Source	3	mA
Pin Current: at VoL	Sink	8.5	mA
Port Current: GPIO	Source	20	mA
Port Current: GPIO	Sink	50	mA
Maximum Junction Temperature		155	°C

TABLE 16-13: ABSOLUTE MAXIMUM RATINGS


Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.







8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е	1.27 BSC			
Overall Height	А	-	- – 1.75		
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B