

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

20000	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 13x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk20dx64vlh5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Orde	ering pa	ırts	3
	1.1	Determ	nining valid orderable parts	3
2	Part	identifi	cation	3
	2.1	Descri	otion	3
	2.2	Format	t	3
	2.3	Fields.		3
	2.4	Examp	le	4
3	Tern	ninolog	y and guidelines	4
	3.1	Definiti	on: Operating requirement	4
	3.2	Definiti	on: Operating behavior	5
	3.3	Definiti	on: Attribute	5
	3.4	Definiti	on: Rating	6
	3.5	Result	of exceeding a rating	6
	3.6	Relatio	nship between ratings and operating	
		require	ments	6
	3.7	Guideli	ines for ratings and operating requirements	7
	3.8	Definiti	on: Typical value	7
	3.9	Typica	I value conditions	8
4	Rati	ngs		9
	4.1	Therma	al handling ratings	9
	4.2	Moistu	re handling ratings	9
	4.3	ESD ha	andling ratings	9
	4.4	Voltage	e and current operating ratings	9
5	Gen	eral		10
	5.1	AC ele	ctrical characteristics	10
	5.2	Nonsw	itching electrical specifications	11
		5.2.1	Voltage and current operating requirements	11
		5.2.2	LVD and POR operating requirements	11
		5.2.3	Voltage and current operating behaviors	12
		5.2.4	Power mode transition operating behaviors	13
		5.2.5	Power consumption operating behaviors	14
		5.2.6	EMC radiated emissions operating behaviors	18
		5.2.7	Designing with radiated emissions in mind	19
		5.2.8	Capacitance attributes	19
	5.3	Switch	ing specifications	19
		5.3.1	Device clock specifications	19
		5.3.2	General switching specifications	20
	5.4	Therma	al specifications	21

		5.4.1	Thermal operating requirements21
		5.4.2	Thermal attributes21
6	Peri	pheral o	operating requirements and behaviors22
	6.1	Core m	nodules22
		6.1.1	JTAG electricals22
	6.2	System	n modules25
	6.3	Clock r	nodules25
		6.3.1	MCG specifications25
		6.3.2	Oscillator electrical specifications27
		6.3.3	32 kHz Oscillator Electrical Characteristics29
	6.4	Memor	ies and memory interfaces
		6.4.1	Flash electrical specifications30
		6.4.2	EzPort Switching Specifications
	6.5	Securit	ty and integrity modules35
	6.6	Analog	
		6.6.1	ADC electrical specifications35
		6.6.2	CMP and 6-bit DAC electrical specifications40
		6.6.3	Voltage reference electrical specifications43
	6.7	Timers	
	6.8	Comm	unication interfaces44
		6.8.1	USB electrical specifications44
		6.8.2	USB DCD electrical specifications45
		6.8.3	USB VREG electrical specifications45
		6.8.4	DSPI switching specifications (limited voltage
			range)46
		6.8.5	DSPI switching specifications (full voltage range).47
		6.8.6	I2C switching specifications49
		6.8.7	UART switching specifications49
		6.8.8	I2S/SAI Switching Specifications49
	6.9	Humar	n-machine interfaces (HMI)54
		6.9.1	TSI electrical specifications54
7	Dim	ensions	
	7.1	Obtain	ing package dimensions55
8	Pinc	out	
	8.1	K20 Si	gnal Multiplexing and Pin Assignments56
	8.2	K20 Pi	nouts58
9	Rev	ision Hi	story60

Terminology and guidelines

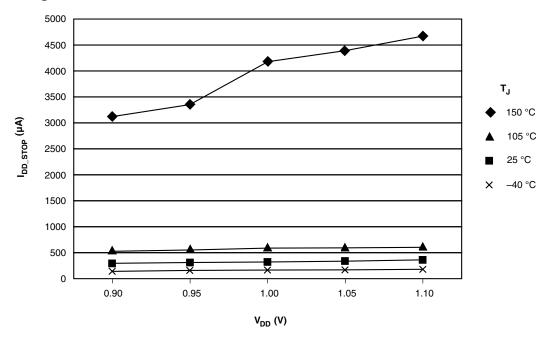
Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) ML = 104 MAPBGA (8 mm x 8 mm) LL = 104 MAPBGA (8 mm x 8 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MK20DN32VLH5

3 Terminology and guidelines


3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

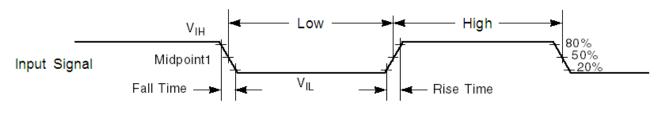
This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥°C
V _{DD}	3.3 V supply voltage	3.3	V

General


Symbol	Description	Min.	Max.	Unit
I _{DD}	Digital supply current	-	155	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
$V_{USB_{DP}}$	USB_DP input voltage	-0.3	3.63	V
$V_{USB_{DM}}$	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have C_L=30pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	867		μA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	1.1	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V	_	509	—	μA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	● @ -40 to 25°C	—	310	426	μA	
	• @ 70°C	—	384	458	μA	
	• @ 105°C	—	629	1100	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	● @ -40 to 25°C	—	3.5	22.6	μA	
	• @ 70°C	—	20.7	52.9	μA	
	• @ 105°C	—	85	220	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					
	● @ -40 to 25°C	—	2.1	3.7	μA	
	• @ 70°C	—	7.7	43.1	μA	
	• @ 105°C	—	32.2	68	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	● @ -40 to 25°C	—	1.5	2.9	μA	
	• @ 70°C	—	4.8	22.5	μA	
	• @ 105°C	—	20	37.8	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	● @ -40 to 25°C	—	1.4	2.8	μA	
	• @ 70°C	—	4.1	19.2	μA	
	• @ 105°C	—	17.3	32.4	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	—	0.678	1.3	μA	
	• @ 70°C	—	2.8	13.6	μA	
	• @ 105°C	—	13.6	24.5	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	 @ −40 to 25°C 	—	0.367	1.0	μΑ	
	• @ 70°C	—	2.4	13.3	μΑ	
	• @ 105°C		13.2	24.1	μA	

 Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

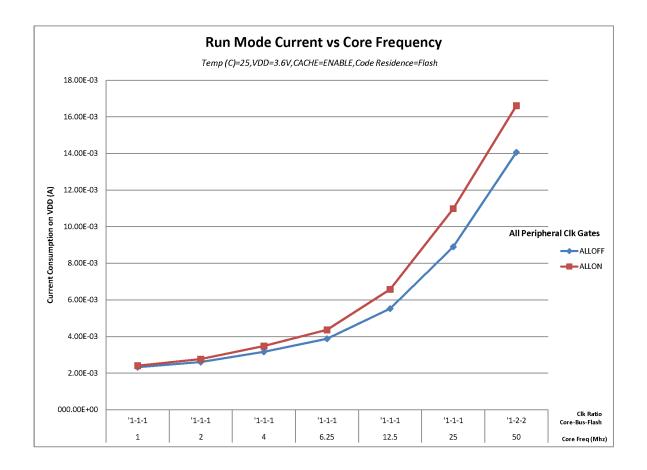


Figure 2. Run mode supply current vs. core frequency

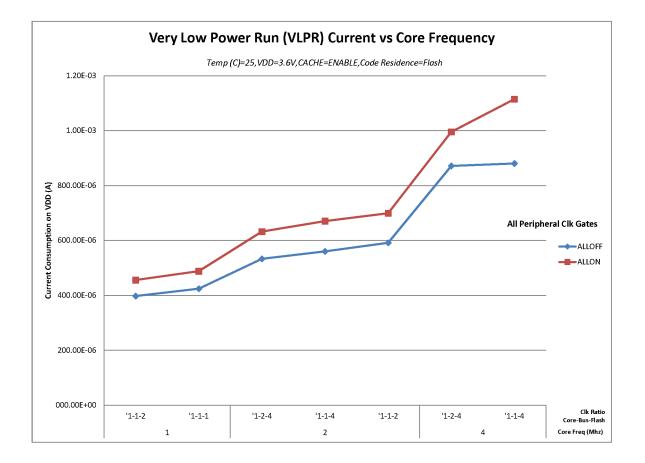


Figure 3. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 64LQFP

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	19	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	21	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	19	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported

emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ } f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, \text{ } f_{SYS} = 48 \text{ MHz}, \text{ } f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to http://www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9		•	
f _{SYS}	System and core clock	_	50	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock		50	MHz	
f _{FLASH}	Flash clock		25	MHz	
f _{LPTMR}	LPTMR clock		25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	36	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V	—	24	ns	

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75pF load
- 5. 15pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	64 MAPBGA	64 LQFP	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	107	65	°C/W	1, 2
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	56	46	°C/W	1,3

Table continues on the next page ...

Board type	Symbol	Description	64 MAPBGA	64 LQFP	Unit	Notes
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	90	53	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	51	40	°C/W	,
_	R _{0JB}	Thermal resistance, junction to board	31	28	°C/W	5
_	R _{θJC}	Thermal resistance, junction to case	31	15	°C/W	6
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	6	3	°C/W	7

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.

3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions – Forced Convection (Moving Air)* with the board horizontal.

5. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.

- 6. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 7. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}		23.99	-	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	-	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll_ref}		71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	-	MHz	
J _{cyc_fll}	FLL period jitter			180	_	ps	
	 f_{VCO} = 48 M f_{VCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target frequer	ncy acquisition time		—	1	ms	6
		PI	LL				
f_{vco}	VCO operating fre	quency	48.0	—	100	MHz	
I _{pll}		rent 1Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 48)	—	1060	_	μΑ	7
I _{pll}		rent 1Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 24)	_	600	-	μΑ	7
f _{pll_ref}	PLL reference free	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	łz	_	120	_	ps	
	• f _{vco} = 100 M	Hz	-	50	-	ps	

Table 13. MCG specifications (continued)

Table continues on the next page ...

- EEPROM allocated FlexNVM based on DEPART; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

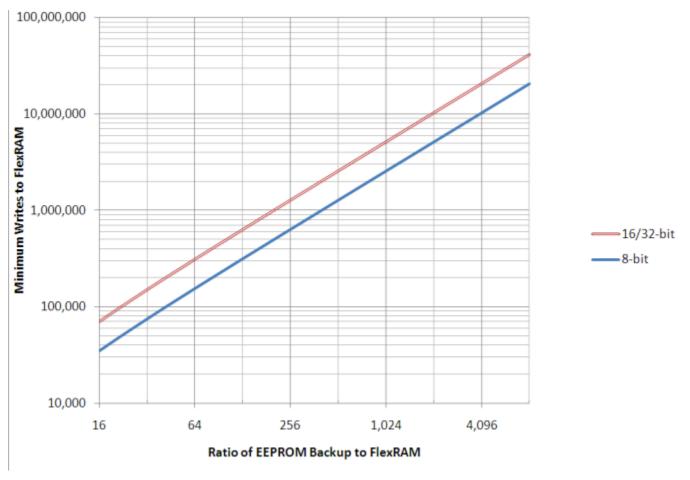


Figure 8. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications

Table 22. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page ...

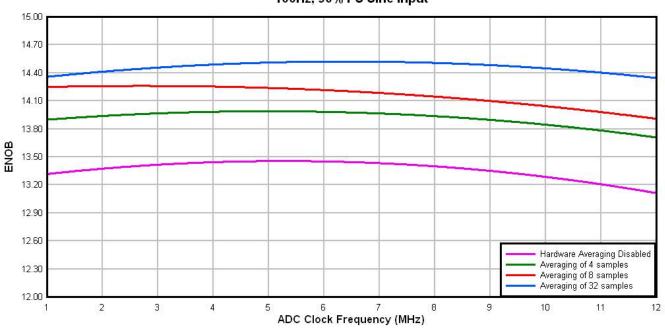
6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

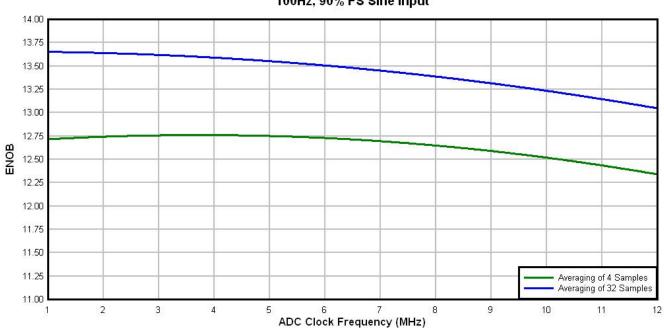
Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	Reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	
C _{ADIN}	Input	16 bit modes	_	8	10	pF	
	capacitance	 8/10/12 bit modes 	_	4	5		
R _{ADIN}	Input resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance	13/12 bit modes f _{ADCK} < 4MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13 bit modes	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16 bit modes	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13 bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					

6.6.1.1 16-bit ADC operating conditions Table 23. 16-bit ADC operating conditions


Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	 ADLPC=1, ADHSC=1 	3.0	4.0	7.3	MHz	f _{ADACK}
f _{ADACK}		ADLPC=0, ADHSC=0	2.4	5.2	6.1	MHz	
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapte	er for sample	times	.		
TUE	Total unadjusted	12 bit modes		±4	±6.8	LSB ⁴	5
	error	• <12 bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12 bit modes	-	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12 bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12 bit modes	-	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12 bit modes 	-	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12 bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		• <12 bit modes	_	-1.4	-1.8		V _{DDA}
							5
EQ	Quantization error	16 bit modes	_	-1 to 0	_	LSB ⁴	
		 ≤13 bit modes 	_	—	±0.5		
ENOB	Effective number	16 bit differential mode					6
	of bits	• Avg=32	12.8	14.5	_	bits	
		• Avg=4	11.9	13.8	_	bits	
		16 bit single-ended mode					
		• Avg=32	12.2	13.9		bits	
		• Avg=4	11.4	13.3		bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16 bit differential mode					7
	distortion	• Avg=32	-	-94	-	dB	
		16 bit single-ended modeAvg=32	_	-85	_	dB	

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)


Table continues on the next page...

Peripheral operating requirements and behaviors

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

Peripheral operating requirements and behaviors

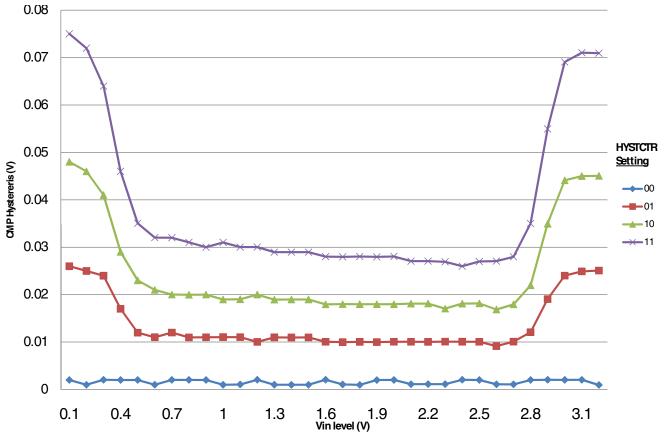


Figure 13. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

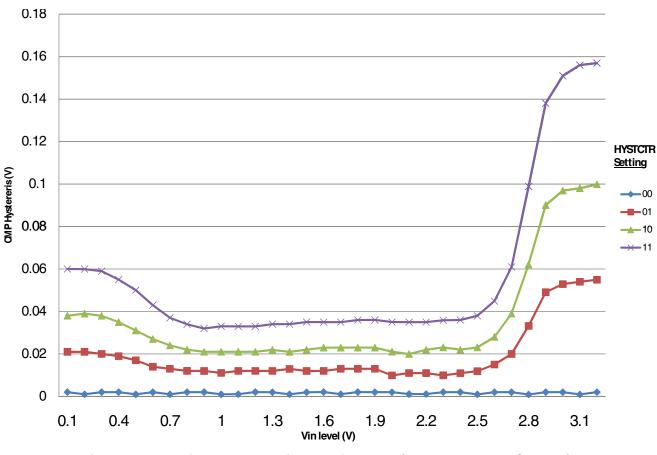


Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	

Table 27. VREF full-range operating behaviors

Table continues on the next page...

Table 40. TSI electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode	—	55	_	μA	
I _{TSI_LP}	Low power mode current adder	—	1.3	2.5	μA	13

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

2. Fixed external capacitance of 20 pF.

3. REFCHRG = 2, EXTCHRG=0.

4. REFCHRG = 0, EXTCHRG = 10.

- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

 $I_{ext} = 6 \ \mu A \ (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 \ \mu A \ (REFCHRG = 7), C_{ref} = 1.0 \ pF$

The minimum value is calculated with the following configuration:

 $I_{ext} = 2 \ \mu A$ (EXTCHRG = 0), PS = 128, NSCN = 32, $I_{ref} = 32 \ \mu A$ (REFCHRG = 15), $C_{ref} = 0.5 \ pF$

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
64-pin LQFP	98ASS23234W
64-pin MAPBGA	98ASA00420D

8 Pinout

8.1 K20 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 Map Bga	64 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
A1	1	PTE0	DISABLED		PTE0		UART1_TX				RTC_CLKOUT	
B1	2	PTE1/ LLWU_P0	DISABLED		PTE1/ LLWU_P0		UART1_RX					
C5	3	VDD	VDD	VDD								
C4	4	VSS	VSS	VSS								
E1	5	USB0_DP	USB0_DP	USB0_DP								
D1	6	USB0_DM	USB0_DM	USB0_DM								
E2	7	VOUT33	VOUT33	VOUT33								
D2	8	VREGIN	VREGIN	VREGIN								
G1	9	ADC0_DP0	ADC0_DP0	ADC0_DP0								
F1	10	ADC0_DM0	ADC0_DM0	ADC0_DM0								
G2	11	ADC0_DP3	ADC0_DP3	ADC0_DP3								
F2	12	ADC0_DM3	ADC0_DM3	ADC0_DM3								
F4	13	VDDA	VDDA	VDDA								
G4	14	VREFH	VREFH	VREFH								
G3	15	VREFL	VREFL	VREFL								
F3	16	VSSA	VSSA	VSSA								
H1	17	VREF_OUT/ CMP1_IN5/ CMP0_IN5	VREF_OUT/ CMP1_IN5/ CMP0_IN5	VREF_OUT/ CMP1_IN5/ CMP0_IN5								
H2	18	CMP1_IN3/ ADC0_SE23	CMP1_IN3/ ADC0_SE23	CMP1_IN3/ ADC0_SE23								
H3	19	XTAL32	XTAL32	XTAL32								
H4	20	EXTAL32	EXTAL32	EXTAL32								
H5	21	VBAT	VBAT	VBAT								
D3	22	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTAO	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
D4	23	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2011–2012 Freescale Semiconductor, Inc.

Document Number: K20P64M50SF0 Rev. 4 5/2012