

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx110f016bt-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Pin Diagrams

TABLE 3: **PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES**

28	-PIN SOIC, SPDIP, SSOP (TOP VIEW) ^{(1,2,3}	9							
	1 SSOI PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B	28 ס		1 SC	JIC	28	1	SPDIP	28
	PIC32MX150F128B PIC32MX170F256B								
Din #	Full Bin Name	p;	. #			Eull Bin	Nama		
Pin #	Full Pin Name		n #			Full Pin	Name		
1	MCLR	1	5 F	PGEC3/RPB		RB6			
1 2	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	1	5 F 6 T	DI/RPB7/C	TED3/PN	RB6 ID5/INT0/F	RB7		
1 2 3	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1		5 F 6 7 7 7	TDI/RPB7/C TCK/RPB8/S	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0		5 F 6 1 7 1 8 1	IDI/RPB7/C ICK/RPB8/S IDO/RPB9/S	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4 5	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1		5 F 6 7 7 7 8 7 9 \	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2		5 F 6 7 7 7 8 7 9 \ 0 \	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap	TED3/PM SCL1/CTE SDA1/CTI	RB6 ID5/INT0/F ED10/PME ED4/PMD	RB7 04/RB8 3/RB9		
1 2 3 4 5 6	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	1 1 1 1 1 1 1 2 2	5 F 6 1 7 7 8 1 9 \ 0 \ 1 F	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB	TED3/PM SCL1/CTE SDA1/CTI	RB6 1D5/INT0/f ED10/PME ED4/PMD2 011/PMD2/	RB7)4/RB8 3/RB9 /RB10		
1 2 3 4 5 6 7	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	1 1 1 1 1 1 1 2 2 2 2	5 F 6 7 7 1 8 7 9 \ 0 \ 1 F 2 F	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap	TED3/PM SCL1/CTE SDA1/CTI 10/CTED	RB6 1D5/INT0/f ED10/PME ED4/PMD2 011/PMD2/	RB7)4/RB8 3/RB9 /RB10		
1 2 3 4 5 6 7 8	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss		5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS	TED3/PM SCL1/CTE SDA1/CTI 10/CTED S/RPB11/F /RB12	RB6 ID5/INT0/I ED10/PME ED4/PMD2 011/PMD2 PMD1/RB	RB7)4/RB8 3/RB9 /RB10 11		
1 2 3 4 5 6 7 8 9	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4 4 /	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS PGEC2/TMS	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTED S/RPB11/F /RB12 S/CTPLS/	RB6 ID5/INT0/I ED10/PME ED4/PMD2 011/PMD2 PMD1/RB PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313	CTED5/PM	
1 2 3 4 5 6 7 8 9 10	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 F 6 1 7 1 8 1 9 \ 0 \ 1 F 2 F 3 / 4 / 5 (TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap PGED2/RPB PGEC2/TMS AN12/PMD0 AN11/RPB13	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTI S/RPB11/F /RB12 3/CTPLS/ N10/C3IN	RB6 ID5/INT0/I ED10/PME ED4/PMD2 PMD1/RB PMRD/RE PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313 /SCK1/(WR/RB14
1 2 3 4 5 6 7 8 9 10 11	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 2	5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4 4 4 5 (6 4	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS AN12/PMD0. AN11/RPB13 CVREFOUT/A	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTI S/RPB11/F /RB12 3/CTPLS/ N10/C3IN	RB6 ID5/INT0/I ED10/PME ED4/PMD2 PMD1/RB PMRD/RE PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313 /SCK1/(WR/RB14

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

TABLE 8: **PIN NAMES FOR 36-PIN USB DEVICES**

36-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX210F016C

	PIC32MX220F032C PIC32MX230F064C PIC32MX250F128C		
			36
			1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	19	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	20	RPC9/CTED7/RC9
3	PGED4 ⁽⁴⁾ /AN6/RPC0/RC0	21	Vss
4	PGEC4 ⁽⁴⁾ /AN7/RPC1/RC1	22	VCAP
5	VDD	23	VDD
6	Vss	24	PGED2/RPB10/D+/CTED11/RB10
7	OSC1/CLKI/RPA2/RA2	25	PGEC2/RPB11/D-/RB11
8	OSC2/CLKO/RPA3/PMA0/RA3	26	VUSB3V3
9	SOSCI/RPB4/RB4	27	AN11/RPB13/CTPLS/PMRD/RB13
10	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	28	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14
11	AN12/RPC3/RC3	29	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
12	Vss	30	AVss
13	Vdd	31	AVdd
14	VDD	32	MCLR
15	TMS/RPB5/USBID/RB5	33	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0
16	VBUS	34	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1
17	TDI/RPB7/CTED3/PMD5/INT0/RB7	35	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0
18	TCK/RP88/SCL1/CTED10/PM04/RB8	36	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1

Note The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin 1: Select" for restrictions.

Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. 2:

The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. 3:

4: This pin function is not available on PIC32MX210F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

		Pin Nu	nber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
AN0	27	2	33	19		Analog	Analog input channels.
AN1	28	3	34	20	I	Analog	
AN2	1	4	35	21		Analog	
AN3	2	5	36	22		Analog	
AN4	3	6	1	23	I	Analog	
AN5	4	7	2	24	I	Analog	
AN6	_	_	3	25	I	Analog	
AN7	_	_	4	26	I	Analog	
AN8	_	_	_	27	I	Analog	
AN9	23	26	29	15	I	Analog	
AN10	22	25	28	14	I	Analog	
AN11	21	24	27	11	I	Analog	
AN12	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾ 11 ⁽³⁾	10 ⁽²⁾ 36 ⁽³⁾	1	Analog	*
CLKI	6	9	7	30	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	7	10	8	31	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	6	9	7	30	I	ST/CMOS	-
OSC2	7	10	8	31	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	8	11	9	33	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	9	12	10	34	0	—	32.768 kHz low-power oscillator crystal output.
REFCLKI	PPS	PPS	PPS	PPS		ST	Reference Input Clock
REFCLKO	PPS	PPS	PPS	PPS	0	—	Reference Output Clock
IC1	PPS	PPS	PPS	PPS		ST	Capture Inputs 1-5
IC2	PPS	PPS	PPS	PPS	1	ST	1
IC3	PPS	PPS	PPS	PPS	1	ST	1
IC4	PPS	PPS	PPS	PPS		ST	1
IC5	PPS	PPS	PPS	PPS		ST	1
	ST = Schm	MOS compa itt Trigger in input buffer			•	O = Outp	Analog inputP = PowerutI = Inputeripheral Pin Select— = N/A

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability. 2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

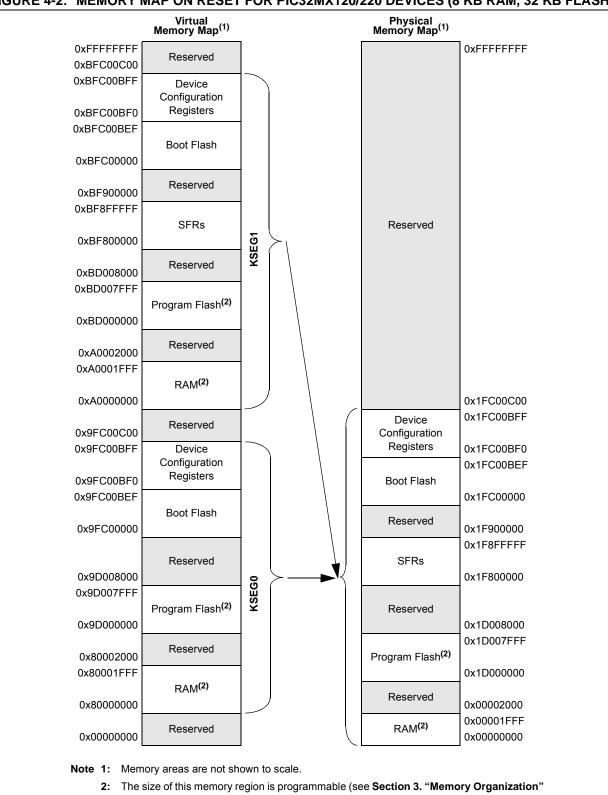
2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/36/44pin Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented


Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX120/220 DEVICES (8 KB RAM, 32 KB FLASH)

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*") and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming™ (ICSP™)

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: The Flash page size on PIC32MX-1XX/2XX 28/36/44-pin Family devices is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ROTRI	//<8:1>			
00.40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	ROTRIM<0>	_	_	_	—	_	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	—	_	_	—

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:

Logona.			
R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON (REFOCON<15>) bit is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_	—	_	—	_	_		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		_		_	_		_			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		CHCSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	CHCSIZ<7:0>									

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	—	—	—	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8		CHCPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	CHCPTR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess							- /				Bit	S							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—	—	—	—	—	_	—		_	—	—	—	_	—	—	0000
5590	UIEF9	15:0			—	—	—	—	_	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	—	_	_			_	—	_	_	_	—	_	_	—	_	0000
53A0	UIEPIU	15:0		_	_	-	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
53BU	UIEPII	15:0	_	—	_	_			_	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEFIZ	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEF 13	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_		_		_	_		_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		_		_	_		_	_	—	_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_	—			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—				_	—
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—			-	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	—	—	—	—	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

Logona			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPPUL	UP: D)+ Pull-U	p Enable	bit	

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- It 6 DIVIPOLOP: D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D + data line pull-down resistor is disabled
- bit 4 **DMPULDWN:** D- Pull-Down Enable bit
 - 1 = D- data line pull-down resistor is enabled
 - 0 = D- data line pull-down resistor is disabled
- bit 3 VBUSON: VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
- bit 1 VBUSCHG: VBUS Charge Enable bit
 - 1 = VBUS line is charged through a pull-up resistor
 - 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

					-			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	—		_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	-	—	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	-	—	_	_	_
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	JSTATE	SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾
	JUNATE	320	TOKBUSY ^(1,5)	USBROI	TIOSTEIN /	RESUMENT	FFDROI	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = No JSTATE was detected on the
- bit 6 **SE0:** Live Single-Ended Zero flag bit 1 = Single-Ended Zero was detected on the USB
 - 0 = No Single-Ended Zero was detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing is disabled (set upon SETUP token received)
 - 0 = Token and packet processing is enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token is being executed by the USB module
 - 0 = No token is being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated
- bit 3 HOSTEN: Host Mode Enable bit⁽²⁾
 - 1 = USB host capability is enabled
 - 0 = USB host capability is disabled
- bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

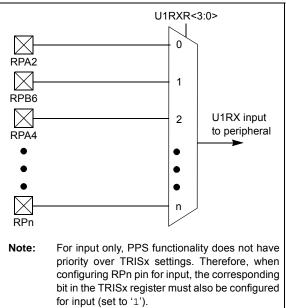
A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin.

Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.3.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

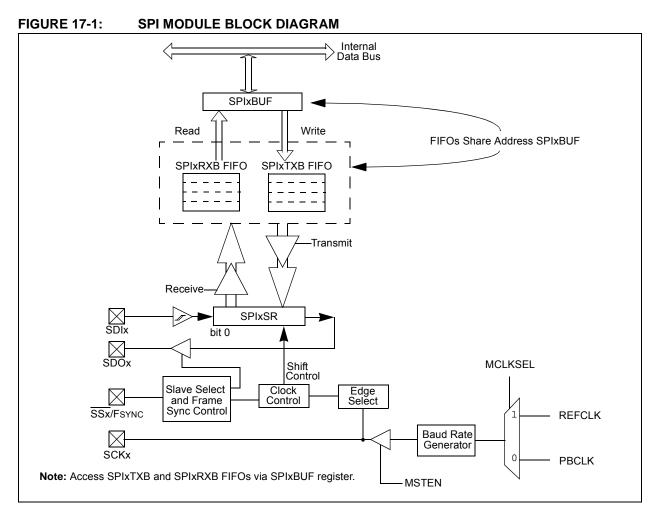
FIGURE 11-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		6									Bits								s
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	—	_	—	_		_	_	-	_	_	_	_	—	-	—	0000
0000	WDICON	15:0	ON	_		_	_	_		_						WDTWINEN	WDTCLR	0000	

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontrollers. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- Master mode and Slave mode support
- Four clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	-	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/clea	red
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I ²	C module is busy
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

- bit 6 I2COV: Receive Overflow Flag bit
 - 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	—	—	-	_			-	_	—	—	—			—	—	_	0000
7000	FINCON	15:0	ON	_	SIDL	ADRML	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF∙	<1:0>	ALP		CS1P	_	WRSP	RDSP	0000
7010	PMMODE	31:16	—	_		_	_		_	_	—	_	—			_	—	_	0000
7010	FININODE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	_	MODE	<1:0>	WAITE	3<1:0>		WAITM	/<3:0>		WAITE	<1:0>	0000
		31:16	_	—	_	_	—	_	—	_	_	_	_	—	—	_	_	—	0000
7020	PMADDR	15:0	_	CS1 ADDR14	_	_	_					/	ADDR<10:0	>					0000
7030	PMDOUT	31:16 15:0								DATAOU	T<31:0>								0000
7040	PMDIN	31:16 15:0		DATAIN<31:0>															
7050		31:16	_	_		_	-		-	_	_	_	—			_	_		0000
7050	7050 PMAEN 15	15:0	_	PTEN14	_	_	_						PTEN<10:0	>					0000
7060	PMSTAT	31:16				_			—	_			—	_	_		—	_	0000
1000	FINISTAT	15:0	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_	_	_	-	_	-	—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HSC = Set by Hardware; Cleared by Software					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

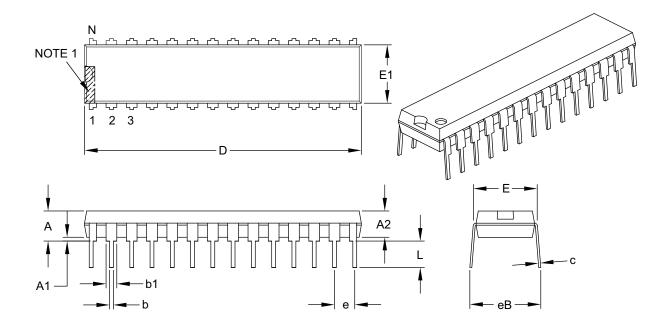
bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 **Unimplemented:** Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_		—	_
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	_	—	—	—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>		CREF	_	_	CCH	<1:0>

REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

Legend:


R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B