

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx110f016bt-v-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

				Rem	appab	le Pe	riphe	erals					(ls)				
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	I ² C	dMq	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels)	RTCC	I/O Pins	JTAG	Packages
PIC32MX210F016B	28	16+3	4	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX210F016C	36	16+3	4	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	25	Y	VTLA
PIC32MX210F016D	44	16+3	4	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX220F032B	28	32+3	8	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX220F032C	36	32+3	8	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA
PIC32MX220F032D	44	32+3	8	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX230F064B	28	64+3	16	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX230F064C	36	64+3	16	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA
PIC32MX230F064D	44	64+3	16	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX250F128B	28	128+3	32	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX250F128C	36	128+3	32	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA VTLA,
PIC32MX250F128D	44	128+3	32	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	TQFP, QFN
PIC32MX230F256B	28	256+3	16	20	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX230F256D	44	256+3	16	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX270F256B	28	256+3	64	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX270F256D	44	256+3	64	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX270F256DB(4)	44	256+3	64	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN

TABLE 2: PIC32MX2XX 28/36/44-PIN USB FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

4: This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers.

TABLE 11: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES

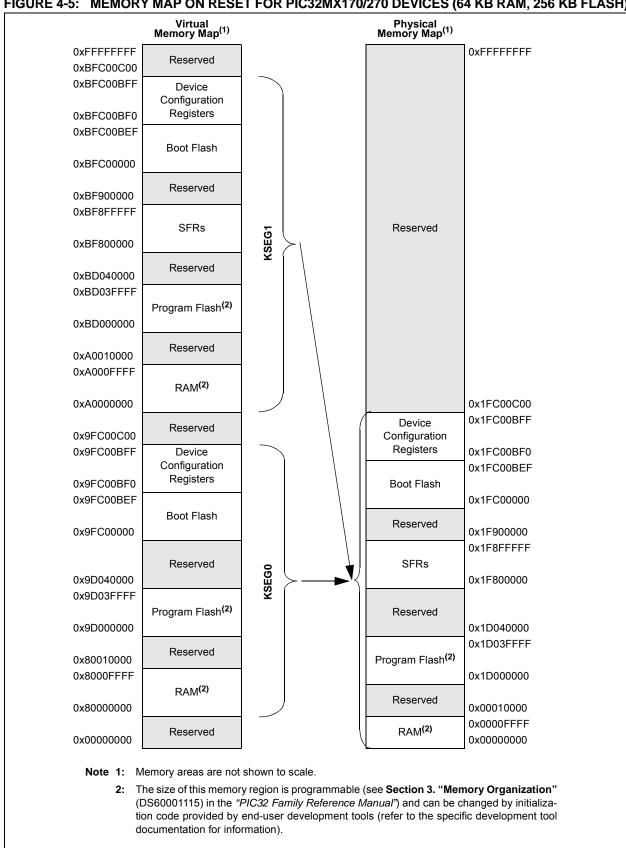
44-PIN TQFP (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

44

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	VDD
7	VCAP	29	Vss
8	PGED2/RPB10/CTED11/PMD2/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/PMD1/RB11	31	OSC2/CLKO/RPA3/RA3
10	AN12/PMD0/RB12	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14	36	RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	VDD
19	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	41	PGED3/RPB5/PMD7/RB5
20	VREF-/CVREF-/AN1/RPA1/CTED2/RA1	42	PGEC3/RPB6/PMD6/RB6
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8


Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

TABLE 4-1: SFR MEMORY MAP

	Virtual A	ddress		
Peripheral	Base	Offset Start		
Watchdog Timer		0x0000		
RTCC		0x0200		
Timer1-5		0x0600		
Input Capture 1-5		0x2000		
Output Compare 1-5		0x3000		
IC1 and IC2		0x5000		
SPI1 and SPI2		0x5800		
UART1 and UART2		0x6000		
PMP		0x7000		
ADC	0xBF80	0x9000		
CVREF		0x9800		
Comparator		0xA000		
CTMU		0xA200		
Oscillator		0xF000		
Device and Revision ID		0xF220		
Peripheral Module Disable		0xF240		
Flash Controller		0xF400		
Reset		0xF600		
PPS		0xFA04		
Interrupts		0x1000		
Bus Matrix		0x2000		
DMA	0xBF88	0x3000		
USB		0x5050		
PORTA-PORTC		0x6000		
Configuration	0xBFC0	0x0BF0		

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	_	_		-	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	_	_	_	_		-	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0	
15:8		_	_	-	_	_	CMR	VREGS	
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾	

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-10 Unimplemented: Read as '0'

bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	1 = Regulator is enabled and is on during Sleep mode
	0 = Regulator is disabled and is off during Sleep mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset as not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view next detection.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data							
	sheet, refer to Section 6. "Oscillator							
	Configuration" (DS60001112), which is							
	available from the Documentation >							
	Reference Manual section of the							
	Microchip PIC32 web site							
	(www.microchip.com/pic32).							

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	UFRCEN: USB FRC Clock Enable bit ⁽¹⁾
	 1 = Enable the FRC as the clock source for the USB clock source 0 = Use the Primary Oscillator or USB PLL as the USB clock source
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable the Secondary Oscillator
	0 = Disable the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess							- /				Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5200		31:16	_	—	—	—	—	—	_	—		_	—	—	—	_	—	—	0000
5390 U1EP9	UIEF9	15:0			—	—	—	—	_	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	50.00 1145040	31:16	_	—	_	_			_	—	_	_	_	—	_	_	—	_	0000
53A0 U1EP10	UIEPIU	15:0		_	_	-	_	_	_	-	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
53BU	UIEPII	15:0	_	—	_	_			_	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEFIZ	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEF 13	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
53E0 U1EF	U1EP14	15:0	_	_	_		_		_	_		_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		_		_	_		_	_	—	_	_	_	_	0000
53F0 U1	U1EP15	15:0	_	_	_	_	_	_	_	—			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0							
31:24		_	—	—	_	—	_	_	
22:16	U-0	U-0							
23:16		_	_	—			_		
15:0	U-0	U-0							
15:8		—	—	—	—	-	—	—	
	R/W-0	R/W-0							
7:0	BTSEE BMXEE		DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾ EOFEE ⁽²⁾	PIDEE	

REGISTER 10-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

	•
bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit
	1 = BTSEF interrupt is enabled
	0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled
	0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled
	0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled
	0 = BTOEF interrupt is disabled
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit
	1 = DFN8EF interrupt is enabled
	0 = DFN8EF interrupt is disabled

- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate the USBIF register, the UERRIE (U1IE<1>) bit must be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	-	-	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—		_	_		_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CNT	<7:0>			

REGISTER 10-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-0 CNT<7:0>: SOF Threshold Value bits Typical values of the threshold are:

 - 01001010 = 64-byte packet 00101010 = **32-byte packet**
 - 00011010 = **16-byte packet**
 - 00010010 = 8-byte packet

REGISTER 10-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	-	-	-	-	-	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		-						—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	-	-	-				—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			B	DTPTRL<15:9)>			_

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-1 BDTPTRL<15:9>: Buffer Descriptor Table Base Address bits This 7-bit value provides address bits 15 through 9 of the Buffer Descriptor Table base address, which defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	—	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	_	_	_	—	_	—	_
7:0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
	_	SWDTPS<4:0>					WDTWINEN	WDTCLR

REGISTER 14-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration
 - 0 = Disable the WDT if it was enabled in software
- bit 14-7 Unimplemented: Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- bit 0 **WDTCLR:** Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- **Note 1:** A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	—	-	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		—	—	-	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 19-1: UXMODE: UARTX MODE REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by the UEN<1:0> and UTXEN control bits.
 - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
- 0 = Continue module operation when the device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
 - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	CH0NB	_	_	—	CH0SB<3:0>				
00.40	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	CH0NA	_	_	—	CH0SA<3:0>				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8		_	_	—	_	—	—	—	
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
7:0	—			—	_	_	_	_	

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

		 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL
bit 30	-28	Unimplemented: Read as '0'
bit 27	-24	CH0SB<3:0>: Positive Input Select bits for Sample B
		<pre>1111 = Channel 0 positive input is Open⁽¹⁾ 1110 = Channel 0 positive input is IVREF⁽²⁾ 1101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽³⁾ 1100 = Channel 0 positive input is AN12⁽⁴⁾</pre>
		•
		•
		•
		0001 = Channel 0 positive input is AN1 0000 = Channel 0 positive input is AN0
bit 23		CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽²⁾
		1 = Channel 0 negative input is AN10 = Channel 0 negative input is VREFL
bit 22	-20	Unimplemented: Read as '0'
bit 19	-16	CH0SA<3:0>: Positive Input Select bits for Sample A Multiplexer Setting 1111 = Channel 0 positive input is Open ⁽¹⁾ 1110 = Channel 0 positive input is IVREF ⁽²⁾ 1101 = Channel 0 positive input is CTMU temperature (CTMUT) ⁽³⁾ 1100 = Channel 0 positive input is AN12 ⁽⁴⁾
		•
		•
		•
		0001 = Channel 0 positive input is AN1 0000 = Channel 0 positive input is AN0
bit 15	-0	Unimplemented: Read as '0'
Note	1: 2: 3: 4:	This selection is only used with CTMU capacitive and time measurement. See Section 24.0 "Comparator Voltage Reference (CVREF)" for more information. See Section 25.0 "Charge Time Measurement Unit (CTMU)" for more information. AN12 is only available on 44-pin devices. AN6-AN8 are not available on 28-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	_	_	_	_	—	—	FWDTWI	NSZ<1:0>	
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN	WINDIS	_	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM	1<1:0>	FPBDI	V<1:0>	—	OSCIOFNC POSCMOD<1:0>			
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	_	FSOSCEN	_	—	F	NOSC<2:0>		

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
······································

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	—	_		_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—	-	—	_	-	-	—
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
15:8		—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾				—
7.0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-1	R/W-1
7:0	_			_	JTAGEN		_	TDOEN

REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logona.						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-14 Unimplemented: Read as '0'

- bit 13 IOLOCK: Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed.
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed.
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed.
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed.

bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '1'
- bit 0 **TDOEN:** TDO Enable for 2-Wire JTAG bit
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

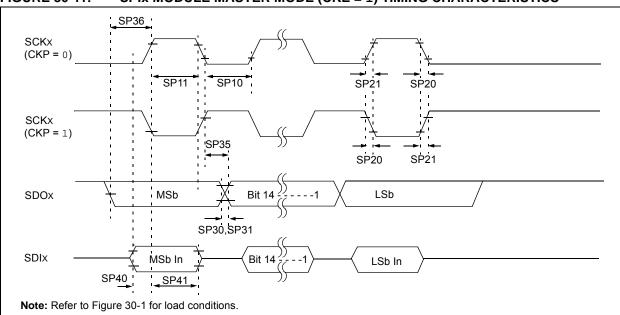
29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	—	_	ns	—	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,	, SDOx Data Output Valid after			15	ns	VDD > 2.7V	
	TscL2DoV	SCKx Edge	_		20	ns	VDD < 2.7V	
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	—	_	ns	—	
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	15	_	_	ns	VDD > 2.7V	
	TDIV2scL	SCKx Edge	20	—		ns	VDD < 2.7V	
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15	—	_	ns	VDD > 2.7V	
	TscL2DIL	to SCKx Edge	20	—	_	ns	VDD < 2.7V	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

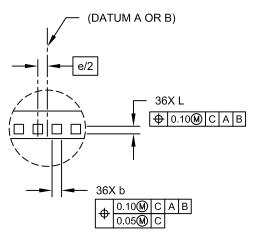
AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				≤ +85°C for Industrial
Param. No.	Symbol Characteristics		Min.	Тур.	Max.	Units	Conditions
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		_	ns	_
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	—		ns	—
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	—

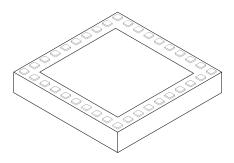
Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 31-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No. Symbol Characteristics		Min.	Typical	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2			ns	
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	_	_	ns	_


Note 1: These parameters are characterized, but not tested in manufacturing.


2: The minimum clock period for SCKx is 40 ns.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX	
Number of Pins	Ν		36		
Number of Pins per Side	ND		10		
Number of Pins per Side	NE		8		
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	Е	5.00 BSC			
Exposed Pad Width	E2	3.60	3.75	3.90	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60 3.75 3.9			
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2