Welcome to **E-XFL.COM** #### What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 40MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT | | Number of I/O | 25 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 12x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 36-VFTLA Exposed Pad | | Supplier Device Package | 36-VTLA (5x5) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx110f016ct-v-tl | #### 3.0 CPU Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at: www.imgtec.com. The MIPS32® M4K® Processor Core is the heart of the PIC32MX1XX/2XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the destinations. #### 3.1 Features - · 5-stage pipeline - · 32-bit address and data paths - MIPS32 Enhanced Architecture (Release 2) - Multiply-accumulate and multiply-subtract instructions - Targeted multiply instruction - Zero/One detect instructions - WAIT instruction - Conditional move instructions (MOVN, MOVZ) - Vectored interrupts - Programmable exception vector base - Atomic interrupt enable/disable - Bit field manipulation instructions - MIPS16e[®] code compression - 16-bit encoding of 32-bit instructions to improve code density - Special PC-relative instructions for efficient loading of addresses and constants - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines - Improved support for handling 8 and 16-bit data types - Simple Fixed Mapping Translation (FMT) mechanism - · Simple dual bus interface - Independent 32-bit address and data buses - Transactions can be aborted to improve interrupt latency - · Autonomous multiply/divide unit - Maximum issue rate of one 32x16 multiply per clock - Maximum issue rate of one 32x32 multiply every other clock - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension-dependent) - Power control - Minimum frequency: 0 MHz - Low-Power mode (triggered by WAIT instruction) - Extensive use of local gated clocks - · EJTAG debug and instruction trace - Support for single stepping - Virtual instruction and data address/value - Breakpoints #### FIGURE 3-1: MIPS32® M4K® PROCESSOR CORE BLOCK DIAGRAM FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH) #### REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | _ | _ | - | _ | | | _ | _ | | 22.46 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | | 15:8 | | | | BMXDU | PBA<15:8> | | | | | 7.0 | R-0 | 7:0 | | | | BMXDU | PBA<7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA. bit 9-0 **BMXDUPBA<9:0>:** Read-Only bits This value is always '0', which forces 1 KB increments **Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ. # DS60001168J-page 105 #### **USB Control Registers** #### TABLE 10-1: USB REGISTER MAP | ess | | | | Bits 9 | | | | | | | | | | | | | | | | |-----------------------------|---------------------------------|---------------|-------|--------|-------|-------|----------|-------|------|------|------------------------|---------------|-------------------|---------------|---------------|---------------|-------------|--------------------|------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5040 | U1OTGIR ⁽²⁾ | 31:16
15:0 | _ | _ | | _ | _ | | _ | _ | —
IDIF | —
T1MSECIF | -
LSTATEIF | —
ACTVIF | —
SESVDIF | —
SESENDIF | _ | -
VBUSVDIF | 0000 | | 5050 | U10TGIE | 31:16
15:0 | _ | _ | _ | _ | _ | _ | _ | _ | —
IDIE | —
T1MSECIE | —
LSTATEIE | —
ACTVIE | —
SESVDIE | —
SESENDIE | _ | —
VBUSVDIE | 0000 | | 5060 | U1OTGSTAT ⁽³⁾ | 31:16 | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 0000 | | 5070 | | 15:0
31:16 | _ | _ | | _ | | _ | | | ID
— | | LSTATE
— | | SESVD — | SESEND — | _ | VBUSVD — | 0000 | | | | 15:0
31:16 | | | | | _ | | | _ | DPPULUP
— | DMPULUP
— | DPPULDWN
— | DMPULDWN
— | VBUSON — | OTGEN — | VBUSCHG | VBUSDIS — | 0000 | | 5080 | U1PWRC | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | UACTPND ⁽⁴⁾ | _ | _ | USLPGRD | USBBUSY | _ | USUSPEND | USBPWR | 0000 | | 5200 | U1IR ⁽²⁾ | 31:16
15:0 | | _ | _ | _ | | _ | _ | _ | STALLIF | —
ATTACHIF | RESUMEIF | IDLEIF | TRNIF | SOFIF | UERRIF | URSTIF
DETACHIF | 0000 | | | | 31:16 | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5210 | U1IE | 15:0 | _ | _ | - | _ | - | _ | - | _ | STALLIE | ATTACHIE | RESUMEIE | IDLEIE | TRNIE | SOFIE | UERRIE | URSTIE DETACHIE | 0000 | | 5220 | U1EIR ⁽²⁾ | 31:16 | _ | _ | | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | —
CRC5EF | _ | 0000 | | 5220 | | 15:0 | _ | _ | | _ | _ | _ | - | _ | BTSEF | BMXEF | DMAEF | BTOEF | DFN8EF | CRC16EF | EOFEF | PIDEF | 0000 | | 5230 | U1EIE | 31:16 | _ | | _ | _ | | | | | | | _ | _ | _ | _ | CRC5EE | _ | 0000 | | | | 15:0 | _ | _ | | _ | _ | _ | | _ | BTSEE | BMXEE | DMAEE | BTOEE | DFN8EE | CRC16EE | EOFEE | PIDEE | 0000 | | 5240 | U1STAT ⁽³⁾ | 31:16
15:0 | _ | _ | _ | _ | | _ | _ | _ | _ | —
ENDF | T<3:0> | _ | DIR | PPBI | _ | _ | 0000 | | | | 31:16 | _ | _ | _ | _ | | _ | _ | _ | _ | _ | —
DICTRIC | _ | _ | _ | _ | _ | 0000 | | 5250 | U1CON | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | JSTATE | SE0 | PKTDIS
TOKBUSY | USBRST | HOSTEN | RESUME | PPBRST | USBEN
SOFEN | 0000 | | 5260 | U1ADDR | 31:16
15:0 | | | | | | | | | —
LSPDEN | _ | _ | | —
VADDR<6: | <u> </u> | _ | _ | 0000 | | 5270 | U1BDTP1 | 31:16 | _ | _ | | _ | | | | _ | — | _ | _ | _ | _ | _ | _ | _ | 0000 | | , | ·· | 15:0 | — D | _ | _ | _ | <u> </u> | | _ | | | | BD | TPTRL<15:9 | • | | | _ | 0000 | x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. ^{2:} This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. Reset value for this bit is undefined. #### **REGISTER 10-10: U1STAT: USB STATUS REGISTER** | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | - | _ | - | - | - | - | - | _ | | 23:16 | U-0 | 23.10 | - | _ | - | - | - | - | - | _ | | 15:8 | U-0 | 15.6 | - | _ | - | - | - | - | - | _ | | 7:0 | R-x | R-x | R-x | R-x | R-x | R-x | U-0 | U-0 | | 7.0 | | ENDP [*] | T<3:0> | | DIR | PPBI | _ | _ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-4 ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits (Represents the number of the Buffer Descriptor Table, updated by the last USB transfer.) 1111 = Endpoint 15 1110 = Endpoint 14 : . 0001 = Endpoint 1 0000 = Endpoint 0 - bit 3 DIR: Last Buffer Descriptor Direction Indicator bit - 1 = Last transaction was a transmit (TX) transfer - 0 = Last transaction was a receive (RX) transfer - bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit - 1 = The last transaction was to the ODD Buffer Descriptor bank - 0 = The last transaction was to the EVEN Buffer Descriptor bank - bit 1-0 Unimplemented: Read as '0' Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF (U1IR<3>) bit is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0. #### 11.1 Parallel I/O (PIO) Ports All port pins have 10 registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch. #### 11.1.1 OPEN-DRAIN CONFIGURATION In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification. See the "Pin Diagrams" section for the available pins and their functionality. # 11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared. The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module. When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level). Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. #### 11.1.3 I/O PORT WRITE/READ TIMING One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP. #### 11.1.4 INPUT CHANGE NOTIFICATION The input change notification function of the I/O ports allows the PIC32MX1XX/2XX 28/36/44-pin Family devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state. Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins. **Note:** Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output. An additional control register (CNCONx) is shown in Register 11-3. #### 11.2 CLR, SET and INV Registers Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified. Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR, or INV register, the base register must be read. **TABLE 11-6:** PERIPHERAL PIN SELECT INPUT REGISTER MAP | SS | | | | | | | | | | В | its | | | | | | | | | |-----------------------------|------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-------|--------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FA04 | INT1R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FAU4 | INTIK | 15:0 | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | | INT1F | R<3:0> | | 0000 | | FA08 | INT2R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17100 | IIVIZIX | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | INT2F | R<3:0> | | 0000 | | FA0C | INT3R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17.00 | IIIII | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | INT3F | R<3:0> | | 0000 | | FA10 | INT4R | 31:16 | | | _ | _ | _ | | | | | _ | | | _ | _ | _ | _ | 0000 | | ., | | 15:0 | | | | _ | | | | | | _ | | | | INT4F | R<3:0> | ı | 0000 | | FA18 | T2CKR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | T2CKI | R<3:0> | | 0000 | | FA1C | T3CKR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | | | _ | _ | _ | _ | | | | _ | | | | T3CKI | R<3:0> | ı | 0000 | | FA20 | T4CKR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | T4CKI | R<3:0> | | 0000 | | FA24 | T5CKR | 31:16 | | | _ | | _ | | | _ | | _ | | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | | | _ | | _ | _ | _ | _ | _ | | T5CKI | R<3:0> | | 0000 | | FA28 | IC1R | 31:16 | _ | _ | _ | | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | _ | 15:0 | _ | _ | _ | | | _ | | _ | _ | _ | _ | _ | | IC1R | <3:0> | | 0000 | | FA2C | IC2R | 31:16 | _ | _ | _ | | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | _ | 15:0 | _ | _ | _ | | | _ | | _ | | _ | | _ | | IC2R | <3:0> | | 0000 | | FA30 | IC3R | 31:16 | _ | _ | _ | | | _ | | _ | | _ | | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | | _ | | | | _ | | _ | | _ | | _ | | IC3R | <3:0> | | 0000 | | FA34 | IC4R | 31:16 | | | | | | | | | | | | | | | | _ | 0000 | | | | 15:0 | | | | | | | | | | | | | | IC4R | <3:0> | | 0000 | | FA38 | IC5R | 31:16 | | _ | | | | _ | | _ | | _ | | _ | _ | _ | | _ | 0000 | | | | 15:0 | _ | _ | | | | _ | | _ | | _ | | _ | | IC5R | <3:0> | | 0000 | | FA48 | OCFAR | 31:16 | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | _ | _ | | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | | OCFA | R<3:0> | | 0000 | | FA4C | OCFBR | 31:16 | | _ | _ | _ | _ | _ | | | | _ | | | _ | _ | | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | OCFB | R<3:0> | | 0000 | | FA50 | U1RXR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | • | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | U1RX | R<3:0> | | 0000 | #### TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED) | ss | | | | | | | | | | В | its | | | | | | | | | |-----------------------------|----------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|-------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | ED00 | RPC8R ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB8C | RPC8R** | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPC8 | <3:0> | | 0000 | | ED00 | RPC9R ⁽³⁾ | 31:16 | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB90 | RPC9R ^(*) | 15:0 | _ | _ | _ | | 1 | 1 | _ | _ | _ | _ | _ | _ | | RPC9 | <3:0> | | 0000 | x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register is only available on 44-pin devices. This register is only available on PIC32MX1XX devices. 2: This register is only available on 36-pin and 44-pin devices. #### 14.0 WATCHDOG TIMER (WDT) Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 9. "Watchdog, Deadman, and Power-up Timers"** (DS60001114), which are available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode. The following are some of the key features of the WDT module: - · Configuration or software controlled - · User-configurable time-out period - · Can wake the device from Sleep or Idle mode Figure 14-1 illustrates a block diagram of the WDT and Power-up timer. FIGURE 14-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM TABLE 22-1: ADC REGISTER MAP (CONTINUED) | ess | | ө | | | | | | | | Ві | ts | | | | | | | | v | |-----------------------------|------------------|----------|-------|-------|-------|-------|-------|-------|-----------|-------------|-----------|-------------|------|------|------|------|------|------|-----------| | Virtual Address
(BF80_#) | Register
Name | Bit Rang | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Reset | | 9120 | ADC1BUFB | 31:16 | | | | | | | ADC Res | ult Word B | (ADC1BUF | B<31·0>) | | | | | | | 0000 | | 0120 | 715015015 | 15:0 | | | | | | | 7.50 1.00 | ait Word B | (7.001001 | D 1011.01) | | | | | | | 0000 | | 0130 | ADC1BUFC | 31:16 | | | | | | | ADC Bos | ult Word C | (ADC1BUF | C<31:0>) | | | | | | | 0000 | | 9130 | ADCIBULC | 15:0 | | | | | | | ADC Res | uit vvoiu C | (ADC IBUF | U<31.02) | | | | | | | 0000 | | 0140 | ADC1BUFD | 31:16 | | | | | | | ADC Boo | ult Word D | (ADC1BUF | D-21:0>) | | | | | | | 0000 | | 9140 | ADCIBULD | 15:0 | | | | | | | ADC Res | uit vvoiu D | (ADC IBUF | D<31.02) | | | | | | | 0000 | | 0150 | ADC1BUFE | 31:16 | | | | | | | ADC Pos | ult Word E | (ADC1BUF | E_31:0\) | | | | | | | 0000 | | 9130 | ADCIBULE | 15:0 | | | | | | | ADO RES | uit vvolu E | (ADC IBUE | L~31.0/) | | | | | | | 0000 | | 0160 | ADC1BUFF | 31:16 | | | | | | | ADC Box | ult Mord E | (ADC1BLIE | E-21:0~\ | | | | | | | 0000 | | 9100 | ADCIBUFF | 15:0 | | | | | | | ADC Res | uit vvoid F | (ADC1BUF | F\31.02) | | | | | | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for details. #### REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) bit 18-10 PWP<8:0>: Program Flash Write-Protect bits(3) ``` Prevents selected program Flash memory pages from being modified during code execution. 111111111 = Disabled 111111110 = Memory below 0x0400 address is write-protected 111111101 = Memory below 0x0800 address is write-protected 111111100 = Memory below 0x0C00 address is write-protected 111111011 = Memory below 0x1000 (4K) address is write-protected 111111010 = Memory below 0x1400 address is write-protected 111111001 = Memory below 0x1800 address is write-protected 111111000 = Memory below 0x1C00 address is write-protected 111110111 = Memory below 0x2000 (8K) address is write-protected 111110110 = Memory below 0x2400 address is write-protected 111110101 = Memory below 0x2800 address is write-protected 111110100 = Memory below 0x2C00 address is write-protected 111110011 = Memory below 0x3000 address is write-protected 111110010 = Memory below 0x3400 address is write-protected 111110001 = Memory below 0x3800 address is write-protected 111110000 = Memory below 0x3C00 address is write-protected 111101111 = Memory below 0x4000 (16K) address is write-protected 110111111 = Memory below 0x10000 (64K) address is write-protected 101111111 = Memory below 0x20000 (128K) address is write-protected 011111111 = Memory below 0x40000 (256K) address is write-protected 000000000 = All possible memory is write-protected Reserved: Write '1' ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits(2) 11 = PGEC1/PGED1 pair is used 10 = PGEC2/PGED2 pair is used 01 = PGEC3/PGED3 pair is used 00 = PGEC4/PGED4 pair is used⁽²⁾ JTAGEN: JTAG Enable bit(1) 1 = JTAG is enabled 0 = JTAG is disabled DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) 1x = Debugger is disabled 0x = Debugger is enabled Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register. 2: The PGEC4/PGED4 pin pair is not available on all devices. Refer to the "Pin Diagrams" section for ``` - - availability. - 3: The PWP<8:7> bits are only available on devices with 256 KB Flash. bit 9-5 bit 4-3 bit 2 bit 1-0 SP60 ✓→ SSx **SCKx** (CKP = 0)sėtz SP73 SCKx (CKP = 1)MSb Bit 14 -LSb SDOx SP30,SP31 SP51 SDIx MSb In Bit 14 LSb In SP40 **FIGURE 30-13:** SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS TABLE 30-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS | AC CHA | ARACTERIS | псѕ | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | | |---------------|-----------------------|--|--|------------------------|------|-------|--------------------|--|--|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Typical ⁽²⁾ | Max. | Units | Conditions | | | | | SP70 | TscL | SCKx Input Low Time (Note 3) | Tsck/2 | _ | _ | ns | _ | | | | | SP71 | TscH | SCKx Input High Time (Note 3) | Tsck/2 | _ | _ | ns | _ | | | | | SP72 | TscF | SCKx Input Fall Time | _ | 5 | 10 | ns | _ | | | | | SP73 | TscR | SCKx Input Rise Time | _ | 5 | 10 | ns | _ | | | | | SP30 | TDOF | SDOx Data Output Fall Time (Note 4) | _ | | _ | ns | See parameter DO32 | | | | | SP31 | TDOR | SDOx Data Output Rise Time (Note 4) | _ | _ | _ | ns | See parameter DO31 | | | | | SP35 | TscH2DoV, | SDOx Data Output Valid after | _ | _ | 20 | ns | VDD > 2.7V | | | | | | TscL2DoV | SCKx Edge | _ | _ | 30 | ns | VDD < 2.7V | | | | | SP40 | TDIV2scH,
TDIV2scL | Setup Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | | | | | SP41 | TscH2DIL,
TscL2DIL | Hold Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | | | | | SP50 | TssL2scH,
TssL2scL | SSx ↓ to SCKx ↓ or SCKx ↑ Input | 175 | _ | _ | ns | _ | | | | - Note 1: These parameters are characterized, but not tested in manufacturing. - Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 3: The minimum clock period for SCKx is 50 ns. - Assumes 50 pF load on all SPIx pins. #### FIGURE 30-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) #### FIGURE 30-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED) | AC CHA | RACTERIS | STICS | | (unless other | rwise st | ated)
re -40° | ons: 2.3V to 3.6V
$C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +105^{\circ}C$ for V-temp | |---------------|----------|--------------------|------------------------|---------------|----------|-------------------------|---| | Param.
No. | Symbol | Characte | eristics | Min. | Max. | Units | Conditions | | IS34 | THD:STO | Stop Condition | 100 kHz mode | 4000 | _ | ns | _ | | | | Hold Time | 400 kHz mode | 600 | _ | ns | | | | | | 1 MHz mode
(Note 1) | 250 | | ns | | | IS40 | TAA:SCL | Output Valid from | 100 kHz mode | 0 | 3500 | ns | _ | | | | Clock | 400 kHz mode | 0 | 1000 | ns | | | | | | 1 MHz mode
(Note 1) | 0 | 350 | ns | | | IS45 | TBF:SDA | Bus Free Time | 100 kHz mode | 4.7 | _ | μS | The amount of time the bus | | | | | 400 kHz mode | 1.3 | | μS | must be free before a new | | | | | 1 MHz mode
(Note 1) | 0.5 | _ | μS | transmission can start | | IS50 | Св | Bus Capacitive Loa | ading | _ | 400 | pF | _ | Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). FIGURE 30-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) #### 32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS **Note:** The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. FIGURE 32-1: I/O OUTPUT VOLTAGE HIGH (VOH) #### 33.2 Package Details This section provides the technical details of the packages. #### 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | 3 | |--------------------------|------------|------|-------------|-------| | Dimens | ion Limits | MIN | NOM | MAX | | Number of Pins | N | | 28 | | | Pitch | е | | 0.65 BSC | | | Overall Height | Α | _ | _ | 2.00 | | Molded Package Thickness | A2 | 1.65 | 1.75 | 1.85 | | Standoff | A1 | 0.05 | _ | _ | | Overall Width | Е | 7.40 | 7.80 | 8.20 | | Molded Package Width | E1 | 5.00 | 5.30 | 5.60 | | Overall Length | D | 9.90 | 10.20 | 10.50 | | Foot Length | L | 0.55 | 0.75 | 0.95 | | Footprint | L1 | | 1.25 REF | | | Lead Thickness | С | 0.09 | _ | 0.25 | | Foot Angle | ф | 0° | 4° | 8° | | Lead Width | b | 0.22 | _ | 0.38 | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side. - 3. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-073B 28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS **Dimension Limits** MIN MOM MAX Contact Pitch 0.65 BSC Ε Contact Pad Spacing С 7.20 Contact Pad Width (X28) X1 0.45 <u>Y1</u> Contact Pad Length (X28) 1.75 G 0.20 Distance Between Pads #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2073A #### 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES | | |----------------------------|------------------|-------|----------|-------| | | Dimension Limits | MIN | NOM | MAX | | Number of Pins | N | | 28 | | | Pitch | е | | .100 BSC | | | Top to Seating Plane | A | - | _ | .200 | | Molded Package Thickness | A2 | .120 | .135 | .150 | | Base to Seating Plane | A1 | .015 | _ | - | | Shoulder to Shoulder Width | E | .290 | .310 | .335 | | Molded Package Width | E1 | .240 | .285 | .295 | | Overall Length | D | 1.345 | 1.365 | 1.400 | | Tip to Seating Plane | L | .110 | .130 | .150 | | Lead Thickness | С | .008 | .010 | .015 | | Upper Lead Width | b1 | .040 | .050 | .070 | | Lower Lead Width | b | .014 | .018 | .022 | | Overall Row Spacing § | еВ | - | _ | .430 | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-070B # 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **DETAIL A** | | Units | N | ILLIMETER | S | |-------------------------|--------|-------|-----------|-------| | Dimension | Limits | MIN | NOM | MAX | | Number of Pins | Ν | | 44 | | | Number of Pins per Side | ND | | 12 | | | Number of Pins per Side | NE | | 10 | | | Pitch | е | | 0.50 BSC | | | Overall Height | Α | 0.80 | 0.90 | 1.00 | | Standoff | A1 | 0.025 | - | 0.075 | | Overall Width | Е | | 6.00 BSC | | | Exposed Pad Width | E2 | 4.40 | 4.55 | 4.70 | | Overall Length | D | | 6.00 BSC | | | Exposed Pad Length | D2 | 4.40 | 4.55 | 4.70 | | Contact Width | b | 0.20 | 0.25 | 0.30 | | Contact Length | L | 0.20 | 0.25 | 0.30 | | Contact-to-Exposed Pad | K | 0.20 | - | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-157C Sheet 2 of 2