

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 010	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx110f016dt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4:PIN NAMES FOR 28-PIN USB DEVICES

28	PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)		
	1 SSOP	28	1 28 1 28 SOIC SPDIP
	PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B		
Pin #	Full Pin Name	Pin #	Full Pin Name
Pin #	Full Pin Name	Pin #	Full Pin Name
1	MCLR	15	VBUS
1	MCLR	15	VBUS
	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	16	TDI/RPB7/CTED3/PMD5/INT0/RB7
1	MCLR	15	VBUS
2	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
1	MCLR	15	VBUS
2	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
6		20	Vcap
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
6		20	Vcap
7		21	PGED2/RPB10/D+/CTED11/RB10
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
6		20	Vcap
7		21	PGED2/RPB10/D+/CTED11/RB10
8		22	PGEC2/RPB11/D-/RB11
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
6		20	VCAP
7		21	PGED2/RPB10/D+/CTED11/RB10
8		22	PGEC2/RPB11/D-/RB11
9		23	VUSB3V3
1 2 3 4 5 6 7 8 9 10	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	15 16 17 18 19 20 21 21 22 23 24	VBUS TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 VSS VCAP PGED2/RPB10/D+/CTED11/RB10 PGEC2/RPB11/D-/RB11 VUSB3V3 AN11/RPB13/CTPLS/PMRD/RB13
1	MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	15	VBUS
2		16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3		17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4		18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5		19	Vss
6		20	VcAP
7		21	PGED2/RPB10/D+/CTED11/RB10
8		22	PGEC2/RPB11/D-/RB11
9		23	VUSB3V3
10		24	AN11/RPB13/CTPLS/PMRD/RB13
11		25	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

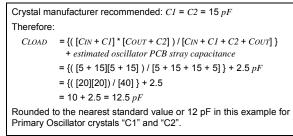
3: Shaded pins are 5V tolerant.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer
	to the Documentation > Reference
	Manuals section of the Microchip PIC32
	website: http://www.microchip.com/pic32

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

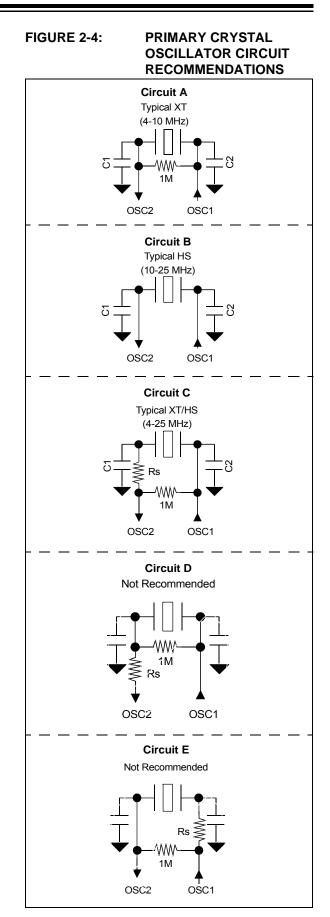

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION



The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data								
	sheet, refer to Section 6. "Oscillator								
	Configuration" (DS60001112), which is								
	available from the Documentation >								
	Reference Manual section of the								
	Microchip PIC32 web site								
	(www.microchip.com/pic32).								

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				CHSSA<	31:24>						
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CHSSA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHSSA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	CHSSA<7:0>										

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		CHDSA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHDSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHDSA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		CHDSA<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess		0									Bi	ts							(0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16	_	—	—	—	_	_	_	_	_	—	_	—	_	_	—	—	0000
5200		15:0	_	—	_	_	—	_	_	_				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	_	—	—	—		—	—	_		—		—	—	—	_	—	0000
52.50	OTTRAIT	15:0	_	—	—	—	—	—	—			—		_	—		FRMH<2:0>	>	0000
52A0	U1TOK	31:16	_	—	—	—		—	—	_		—	_	_	—	—	_	—	0000
5270	UTTOR	15:0	_	—	—	—	—	—	—			PID	<3:0>			EP	<3:0>	-	0000
52B0	U1SOF	31:16	—	—			—			_	_	—	—	—	—	—	—	—	0000
5260	0130F	15:0	—			_	_		_					CNT<7	/:0>		-	•	0000
52C0	U1BDTP2	31:16	_	—		_			_	_	_	—	_	—	—	_	_	—	0000
5200	OIBDIF2	15:0	_	—		_			_	_				BDTPTR	H<7:0>				0000
52D0	U1BDTP3	31:16	_	—	—	—	—	—	—	_	_	—	_	_	—	—	—	—	0000
5200	01BD1F3	15:0	_	—		_			_	_				BDTPTRI	J<7:0>				0000
52E0	0 U1CNFG1	31:16	_	—	—	—	—	—	—	_	_	—	_	_	—	—	—	—	0000
5210		15:0	_	_	—	—	—	—	—	_	UTEYE	UOEMON		USBSIDL	—	—	_	UASUSPND	0001
5300	U1EP0	31:16	_	_	—	—	—	—	—	_		—		_	—	—	_	—	0000
5500	UIEI U	15:0	_	_	—	—	—	—	—	_	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	_	_	—	—	—	—	—	_		—		_	—	—	_	—	0000
5510	UIEI I	15:0	_	_	—	—	—	—	—	_		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	—	—	_	_	_	_	—	_	—	—	—	_	—	_	—	—	0000
0020	OTET 2	15:0	_	—		—	—		—	—		—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	_	—		—	—	—	—			—	_		—	—		—	0000
0000	UTER 0	15:0	_	—		—	—		—	—		—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—		—	0000
0010	01EFT	15:0	—	—	—	—	—		—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	01EI 0	15:0	—	—	—	—	—		—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5360	U1EP6	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	0.2.0	15:0	_	_	_	—					_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5370	U1EP7	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—		—	0000
3070	01217	15:0	—	—	—	—	—	—	—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5380	U1EP8	31:16	_	—	—	—			—	_	_	—	_	_	—	—	—	—	0000
5500	UTEP8	15:0	—	-	_	_	—	_	_	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	_			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	_	-	—	_	_	-	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	P]R<3:0>	

REGISTER 11-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 11-1 for input pin selection values.

Note: Register values can only be changed if the Configuration bit, IOLOCK (CFGCON<13>), = 0.

REGISTER 11-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	—		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	—	_	—	_	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_				RPnR	<3:0>	

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 11-2 for output pin selection values.

Note: Register values can only be changed if the Configuration bit, IOLOCK (CFGCON<13>), = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—			_	_	-	_
15:8	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
10.0	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	-	_
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7.0	TGATE		TCKPS	S<1:0>		TSYNC	TCS	

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled
 - 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to Timer1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 **TWIP:** Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

- 1 = Asynchronous write to the Timer1 register in progress
- 0 = Asynchronous write to Timer1 register is complete
- In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 **Unimplemented:** Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit
 - When TCS = 1:

This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6 Unimplemented: Read as '0'

bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits

- 11 = 1:256 prescale value
- 10 = 1:64 prescale value
- 01 = 1:8 prescale value
- 00 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

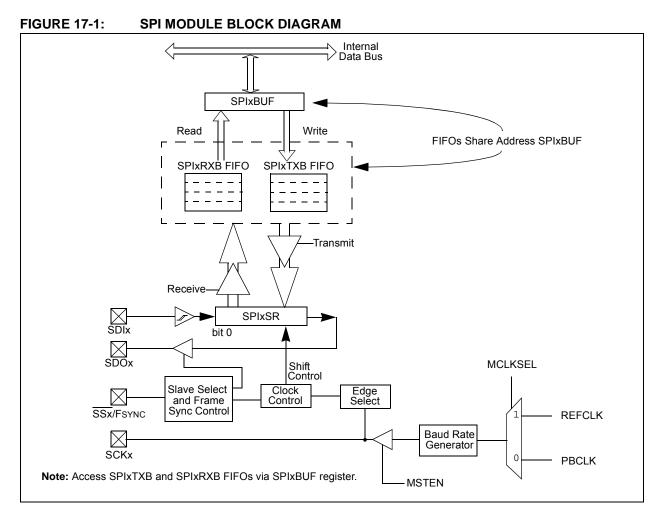
14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		6									Bits								s
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	00 WDTCON	31:16	_	—	_	—	_		_	_	-	_	_	_	_	—	-	—	0000
0000		15:0	ON	_		_	_	_		_			SI	VDTPS<4:	0>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.


NOTES:

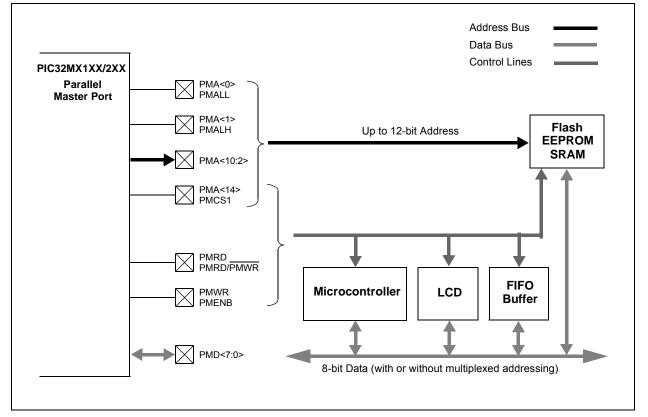
17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontrollers. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- Master mode and Slave mode support
- Four clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

20.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128),
	which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Key features of the PMP module include:

- Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single Chip Select
 - up to 12 address lines without Chip Select
- One Chip Select line
- Programmable strobe options
 - Individual read and write strobes or;
 - Read/write strobe with enable strobe
- · Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- · Legacy parallel slave port support
- · Enhanced parallel slave support
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait states
- · Selectable input voltage levels

Figure 20-1 illustrates the PMP module block diagram.

FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>		
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		—	_	MONTH10					
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		— — DAY10<1:0>				DAY01	<3:0>		
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
7:0	—	—	—	_	—	WDAY01<2:0>			
Legend:									
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'				
-n = Value	e at POR		'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown				

REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digit; contains a value from 0 to 9

bit 27-24 **YEAR01<3:0>:** Binary-Coded Decimal Value of Years bits, 1s place digit; contains a value from 0 to 9 bit 23-21 **Unimplemented:** Read as '0'

bit 20 **MONTH10:** Binary-Coded Decimal Value of Months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary-Coded Decimal Value of Days bits, 10s place digit; contains a value of 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 WDAY01<2:0>: Binary-Coded Decimal Value of Weekdays bits; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 10 EDGSEQEN: Edge Sequence Enable bit 1 = Edge1 must occur before Edge2 can occur 0 = No edge sequence is needed IDISSEN: Analog Current Source Control bit⁽²⁾ bit 9 1 = Analog current source output is grounded 0 = Analog current source output is not grounded bit 8 **CTTRIG:** Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current bit 1-0 IRNG<1:0>: Current Range Select bits⁽³⁾ 11 = 100 times base current 10 = 10 times base current
 - 01 = Base current level
 - 00 = 1000 times base current⁽⁴⁾
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical 3: Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

26.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN (OSCCON<4>) bit is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

26.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The Peripheral Bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

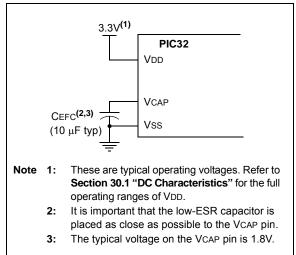
To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

27.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX 28/36/44-pin Family devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX 28/36/44-pin Family family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 30.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

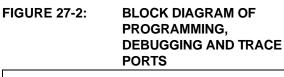

27.3.1 ON-CHIP REGULATOR AND POR

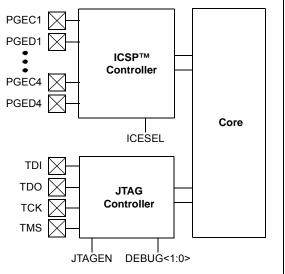
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

27.3.2 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX 28/36/44-pin Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 30.1 "DC Characteristics"**.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR


27.4 Programming and Diagnostics


PIC32MX1XX/2XX 28/36/44-pin Family devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

Figure 27-2 illustrates a block diagram of the programming, debugging, and trace ports.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Parameter No.	Typical ⁽²⁾	Max.	Units	Units Conditions							
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)											
DC30a	1	1.5	mA		4 MHz (Note 3)						
DC31a	2	3	mA		10 MHz						
DC32a	4	6	mA		20 MHz (Note 3)						
DC33a	5.5	8	mA		30 MHz (Note 3)						
DC34a	7.5	11	mA		40 MHz						
DC37a	100	_	μA	-40°C		LPRC (31 kHz)					
DC37b	250	_	μA	+25°C	3.3V	(Note 3)					
DC37c	380		μA	+85°C	1						

TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- UCD DLL as sillator is dischard if the LLCD readule is implemented
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

TABLE 30-34: ADC MODULE SPECIFICATIONS

	AC CHAR	ACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol Characteristics			Typical	Max.	Units	Conditions			
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/V	REF-			•			
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)			
AD21d	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD22d	DNL	Differential Non-linearity	> -1	—	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)			
AD23d	Gerr	Gain Error	> -4	—	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD24d	EOFF	Offset Error	> -2	_	< 2	Lsb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD25d		Monotonicity			_	_	Guaranteed			
Dynami	c Performa	ance	·				<u> </u>			
AD32b	SINAD	Signal to Noise and Distortion	55	58.5	_	dB	(Notes 3,4)			
AD34b	ENOB	Effective Number of bits	9.0	9.5		bits	(Notes 3,4)			

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 31-5: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol Characteristics		Min.	Typical	Max.	Units	Conditions		
MOS10		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		50 50		EC (Note 2) ECPLL (Note 1)		

Note 1: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 31-6:SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No. Symbol		Characteristics	Min.	Typical	Max.	Units	Conditions			
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2		—	ns	_			
MSP11 TscH		SCKx Output High Time (Note 1,2)	Tscк/2		—	ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

TABLE 31-7: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2	_	_	ns	_			
MSP11	TSCH	SCKx Output High Time (Note 1,2)	Тѕск/2	_	_	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.