

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f032b-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 28-PIN USB DEVICES

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX250F128B

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	18	PGED2/RPB10/D+/CTED11/RB10
5	Vss	19	PGEC2/RPB11/D-/RB11
6	OSC1/CLKI/RPA2/RA2	20	VUSB3V3
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/RB4	22	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14
9	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	TMS/RPB5/USBID/RB5	25	AVDD
12	VBUS	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00					

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

L ogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP

ess										Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060	DCH0CON	31:16	_	_	_	—	_		_	—	_	_	_	—	_	_		-	0000
3000	DCHUCON	15:0	CHBUSY	_	—	—	—		—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	_	_	—			_	—	—		•		CHAIR	Q<7:0>				00FF
3070	DOINCON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_		FF00
3080	DCH0INT	31:16	—	_	—	—	—	_	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
5000	DCHOINT	15:0	_	_	—	—	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16		CHSSA<31:0>											0000				
0000	Donooon	15:0		000											0000				
3040	DCH0DSA	31:16		CHDSA<31:0>												0000			
3070	DOI 10DOA	15:0		CHDSA<31:0>												0000			
30B0	DCH0SSIZ	31:16	—												0000				
0000	DOI100012	15:0								CHSSIZ	Z<15:0>								0000
3000	DCH0DSIZ	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	DOMODOL	15:0								CHDSIZ	Z<15:0>	-							0000
3000	DCH0SPTR	31:16	—	—	—	—		_	—	—	—	—	_		—	—	—	—	0000
0000	Donioor IIX	15:0								CHSPTI	R<15:0>								0000
30E0	DCH0DPTR	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
OOLO		15:0								CHDPT	R<15:0>								0000
30E0	DCH0CSIZ	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
001 0	DOI100012	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
0100	Donioor IIX	15:0								CHCPT	R<15:0>								0000
3110	DCH0DAT	31:16		_	—				—	—	—	—	—	—	—	—	_	—	0000
0110	DOITODAT	15:0	—	—	—				—	—				CHPDA	\T<7:0>				0000
3120	DCH1CON	31:16		_	—				—	—	—	—	—		—	—		—	0000
0120	Donnoon	15:0	CHBUSY	—	—				—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3130	DCH1ECON	31:16	—	_	—	—	—	_	—	—				CHAIR	Q<7:0>				OOFF
5150	DOITILOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	_	FF00
3140	DCH1INT	31:16	_	_	—			_	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
5140	DOLLING	15:0	_	_	_	_	—	_	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16								CHSSA	<31.0>								0000
5150	DOITIOGA	15:0								0100									0000
3160	DCH1DSA	31:16								CHDSA	1<31.0>								0000
3100	DONIDSA	15:0									~~~~								0000
Leger	od∙ v=u	nknown	value on R	leset: — =	unimplemer	nted read a	s '0' Reset	values are	shown in h	nexadecimal									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	DCRCDATA<31:24>													
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	DCRCDATA<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8				DCRCDAT	A<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				DCRCDA	TA<7:0>									

REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24				DCRCXOF	<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	DCRCXOR<23:16>													
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8				DCRCXO	R<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				DCRCXO	R<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

USB Control Registers 10.1

TABLE 10-1: USB REGISTER MAP

ess											Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	(4)	31:16	_	—	—	—	—	—		_	—	—	—	—	—	_	_	—	000
5040	UTUTUIK()	15:0		_	_	—	_	_		_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	1	VBUSVDIF	000
5050	U10TGIE	31:16	—	—	—	—	—	—	—	—	—		—	—	—	—	_	—	000
0000	OTOTOLE	15:0	—	—	—	—	—	—	—	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	000
5060	U10TGSTAT ⁽³⁾	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0000	0101001/11	15:0	—	—	—	—	—	—	—	—	ID		LSTATE	—	SESVD	SESEND	_	VBUSVD	000
5070	U10TGCON	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0070	UTOTOOON	15:0	_	—	—	—	—	—	_	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	000
5080	U1PWRC	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0000	on wite	15:0	_	—	—	—	—	—	_	—	UACTPND ⁽⁴⁾		—	USLPGRD	USBBUSY	—	USUSPEND	USBPWR	000
		31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
5200	U1IR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	000
		04.40																DETACHIF	000
5210	U1IE	31:16	_	_						_	—	—		—	—	—	—		000
5210	OTIE	15:0	—	—		—	—	—	—	—	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	000
		31:16	_	_	_	_		_			_	_	_	_	_	_	_		000
5220	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF	000
		31:16	_	_		_	_	_	_	_	_		_	_	_	_	_		000
5230	U1EIE	15:0	_	_	_	_	_	_	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE EOFEE	PIDEE	000
	(2)	31:16	_	_		_	_			_		_		_	_		_	_	000
5240	U1STAT ⁽³⁾	15:0	_	_	_	_	_	_		_			PT<3:0>		DIR	PPBI	_	_	000
		31:16	_		_	_	_	_		_	_	_			_	_	_	_	000
5250	U1CON												PKTDIS					USBEN	000
		15:0		—	—	—	—	—		—	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	000
5260	U1ADDR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	000
5260	UTADDR	15:0	_	_	_	_	_	—	_	_	LSPDEN			DE	VADDR<6:	0>			000
5070		31:16	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	000
5270	U1BDTP1	15:0	—			—				_			BC) TPTRL<15:9>	>				0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

2: This register does not have associated SET and INV registers.

This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess							- /				Bit	S							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—	—	—	—	—	_	—		_	—	—	—	_	—	—	0000
5590	UIEF9	15:0			—	—	—	—	_	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	—	_	_			_	—	_	_	_	—	_	_	—	_	0000
53A0	UIEPIU	15:0		_	_	-	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
53BU	UIEPII	15:0	_	—	_	_			_	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEFIZ	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEF 13	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_		_		_	_		_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		_		_	_		_	_	_	_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_	—			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

INE OIOT												
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	-	—	_	_	—	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	-	—	_	_	—	_				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	—		—	_	_	—	—				
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
7:0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾	_	USUSPEND	USBPWR				

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

zogonai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Note 1: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB00	RPA0R	31:16		—	—	—	_	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	_	_	—	_	_	—	—	—		RPA0	<3:0>		0000
FB04	RPA1R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 001		15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA1	<3:0>		0000
FB08	RPA2R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 000	i (i / t <u></u>	15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA2	<3:0>		0000
FB0C	RPA3R	31:16	_	_	—	—	_	_	_	_	_	—	_	—	_	—		—	0000
T BOC		15:0	_		—	_	_	_	—	_	_		—	_		RPA3	<3:0>		0000
FB10	RPA4R	31:16		_	_	_	_	_	_	_	_		_	_	_	—		—	0000
T D IO		15:0	—	—	—	—	_		—	_		—	—	—		RPA4	<3:0>		0000
FB20	RPA8R ⁽¹⁾	31:16	—	—	—	—	_		—	_		—	—	—	_	—	—	—	0000
1 020		15:0	_	—	—	—	_		—	_		—	—	—		RPA8	<3:0>		0000
FB24	RPA9R ⁽¹⁾	31:16	—	—	—	—	-		—	-		_	—	—	-	—	_	—	0000
1 D24	KFA9K /	15:0	—	—	—	—	-		—	-		_	—	—		RPA9	<3:0>		0000
FB2C	RPB0R	31:16	_	_	—	—	_	-	_	_	-	—	_	—	_	_	_	—	0000
1 020	KF DUK	15:0	_	—	—	—	_	_	—	_	_	—	—	—		RPB0	<3:0>		0000
FB30	RPB1R	31:16	—	_	—	—			—			—	—	—		_	—	—	0000
FB30	REDIR	15:0	—	_	—	—			—			—	—	—		RPB1	<3:0>		0000
FB34	RPB2R	31:16	_	_	_	_			_			_	_	_		_	_	—	0000
FB34	RPBZR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB2	<3:0>		0000
FB38	RPB3R	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
FB30	RPBJR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB3	<3:0>		0000
FD2C		31:16	—	—	—	—	—	_	_	—	_	—	_	—	—	—	—	—	0000
FB3C	RPB4R	15:0	_	_	—	_	_	_	_	_	_	_	_	_		RPB4	<3:0>		0000
ED 40		31:16			—	—	—	-	—	—	—	—	—	—	_			—	0000
FB40	RPB5R	15:0	_		—											RPB5	<3:0>		0000
5044		31:16	_	—	_	—	—	_	_	_	_	—	_	—	_	_	_	—	0000
FB44	RPB6R ⁽²⁾	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB6	<3:0>		0000
50.40		31:16	_	—	_	—	_	_	_	_	_	—	_	—	_	_	_	—	0000
FB48	RPB7R	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB7	<3:0>		0000

DS60001168J-page 138

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: This register is only available on PIC32MX1XX devices.

3: This register is only available on 36-pin and 44-pin devices. PIC32MX1XX/2XX 28/36/44-PIN FAMILY

16.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features:

- · Multiple Output Compare Modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		a								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9120	ADC1BUFB	31:16							ADC Res	ult Word B	(ADC1BUF	B<31.0>)							0000
0120	ABO IBOI B	15:0							7.001.00		(71201201	5.01.07)							0000
0130	ADC1BUFC	31:16									(ADC1BUF	C<31.05)							0000
9130	ADCIDUIC	15:0							ADC NES		(ADC ID01	0~31.0~)							0000
0140	ADC1BUFD	31:16									(ADC1BUF								0000
9140	ADC IDOI D	15:0							ADC Nes		(ADC ID01	D<31.02)							0000
0150	ADC1BUFE	31:16									(ADC1BUF	E<31.05)							0000
3150		15:0										∟ <01.07)							0000
0160	ADC1BUFF	31:16		0000															
9100	ADGIDUFF	15:0		ADC Result Word F (ADC1BUFF<31:0>)															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for details.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	—	-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	_	-
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ADRC	_	—			SAMC<4:0>(1)		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0
7:0				ADCS<	7:0> (2)			

Legend:

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - **2:** This bit is not used if the ADRC (AD1CON3<15>) bit = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	_	—	_		_	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	-	—	_	_	-	—			
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾				—			
7.0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-1	R/W-1			
7:0	_			_	JTAGEN		_	TDOEN			

REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

- bit 13 IOLOCK: Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed.
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed.
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed.
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed.

bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '1'
- bit 0 **TDOEN:** TDO Enable for 2-Wire JTAG bit
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DO10	Vol	Output Low Voltage	_	_	0.4	V	$\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
		Output High Voltage	1.5(1)	_	_		IOH \geq -14 mA, VDD = 3.3V		
DO20	Vон	I/O Pins	2.0 ⁽¹⁾	_	_	v	IOH \geq -12 mA, VDD = 3.3V		
D020	VOH		2.4	_	_	v	IOH \geq -10 mA, VDD = 3.3V		
			3.0(1)	—	—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Conditions					
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_				

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 30-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments				
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1				
D313	DACREFH	CVREF Input Voltage	AVss	_	AVDD	V	CVRSRC with CVRSS = 0				
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1				
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size				
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size				
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>				
			_	—	DACREFH/32	_	CVRCON <cvrr> = 0</cvrr>				
D316	DACACC	Absolute Accuracy ⁽²⁾		_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>				
				_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>				

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 30-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments	
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (1 ohm). Typical voltage on the VCAP pin is 1.8V.	

TABLE 30-34: ADC MODULE SPECIFICATIONS

	AC CHAR	ACTERISTICS						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/V	REF-		•	•	
AD20d	Nr	Resolution		10 data bits			(Note 3)	
AD21d	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Non-linearity	> -1	—	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	> -4	—	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	EOFF	Offset Error	> -2	_	< 2	Lsb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d		Monotonicity			_	_	Guaranteed	
Dynami	c Performa	ance	·			·		
AD32b	SINAD	Signal to Noise and Distortion	55	58.5	_	dB	(Notes 3,4)	
AD34b	ENOB	Effective Number of bits	9.0	9.5		bits	(Notes 3,4)	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
Clock P	arameters	S		•			·
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 30-35
Convers	sion Rate						·
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—
AD56	FCNV	Throughput Rate (Sampling Speed)	_	—	1000	ksps	AVDD = 3.0V to 3.6V
			—	—	400	ksps	AVDD = 2.5V to 3.6V
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns
Timing	Paramete	rs					
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	_	1.0 Tad		_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	—
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	—

TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

FIGURE 32-1: I/O OUTPUT VOLTAGE HIGH (VOH)

APPENDIX A: REVISION HISTORY

Revision A (May 2011)

This is the initial released version of this document.

Revision B (October 2011)

The following two global changes are included in this revision:

- All packaging references to VLAP have been changed to VTLA throughout the document
- All references to VCORE have been removed
- All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed
- V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables

This revision includes the addition of the following devices:

- PIC32MX130F064B
- PIC32MX130F064C
- PIC32MX130F064D
- PIC32MX150F128B
- PIC32MX150F128CPIC32MX150F128D
- PIC32MX250F128C
 PIC32MX250F128D

PIC32MX230F064B

PIC32MX230F064C

PIC32MX230F064D

PIC32MX250F128B

Text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-1.

Section	Update Description				
"32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio	Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2)				
and Graphics Interfaces, USB, and Advanced Analog"	Added the SPDIP package reference (see Table 1, Table 2, and " Pin Diagrams ").				
	Added the new devices to the applicable pin diagrams.				
	Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices.				
1.0 "Device Overview"	Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1).				
	Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1).				
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).				

TABLE A-1: MAJOR SECTION UPDATES