

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f032d-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES

28-PIN QFN (TOP VIEW)^(1,2,3.4)

PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B PIC32MX150F128B PIC32MX170F256B

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	18	PGED2/RPB10/CTED11/PMD2/RB10
5	Vss	19	PGEC2/TMS/RPB11/PMD1/RB11
6	OSC1/CLKI/RPA2/RA2	20	AN12/PMD0/RB12
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/RB4	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
9	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	PGED3/RPB5/PMD7/RB5	25	AVdd
12	PGEC3/RPB6/PMD6/RB6	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	VREF-/CVREF-/AN1/RPA1/CTED2/RA1
Note	1: The RPn pins can be used by remappable peripherals. See T	able 1 for th	e available peripherals and Section 11.3 "Peripheral Pin

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

TABLE 12: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN TQFP (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

44

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	VDD
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	VDD
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX210F016D and PIC32MX220F032D devices.

5: Shaded pins are 5V tolerant.

		Pin Nu	mber ⁽¹⁾								
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description				
PMA0	7	10	8	3	I/O	TTL/ST	Parallel Master Port Address bit 0 input (Buffered Slave modes) and output (Master modes)				
PMA1	9	12	10	2	I/O	TTL/ST	Parallel Master Port Address bit 1 input (Buffered Slave modes) and output (Master modes)				
PMA2		_	_	27	0	_	Parallel Master Port address				
PMA3				38	0	—	(Demultiplexed Master modes)				
PMA4				37	0	—					
PMA5		_	_	4	0	_					
PMA6		_	_	5	0	_					
PMA7				13	0	—					
PMA8		_	_	32	0	_					
PMA9		_	_	35	0	_					
PMA10		_	_	12	0	_					
PMCS1	23	26	29	15	0	_	Parallel Master Port Chip Select 1 strobe				
	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾	10 ⁽²⁾	1/0	TTI /CT	Parallel Master Port data (Demultiplexed				
	1 ⁽³⁾	4 ⁽³⁾	35 ⁽³⁾	21 ⁽³⁾	1/0	111/31	Master mode) or address/data				
PMD1	19 (2)	22 ⁽²⁾	25 ⁽²⁾	9 (2)	1/0	TTI /CT	(Multiplexed Master modes)				
	2 ⁽³⁾	5 ⁽³⁾	36 ⁽³⁾	22 ⁽³⁾	1/0	111/31					
	18 ⁽²⁾	21 ⁽²⁾	24 ⁽²⁾	8 ⁽²⁾	1/0	TTI /ST					
	ვ(3)	6 ⁽³⁾	1 ⁽³⁾	23 ⁽³⁾	1/0	116/01					
PMD3	15	18	19	1	I/O	TTL/ST					
PMD4	14	17	18	44	I/O	TTL/ST					
PMD5	13	16	17	43	I/O	TTL/ST					
PMD6	12 ⁽²⁾	15 ⁽²⁾	16 ⁽²⁾	42 ⁽²⁾	1/0	TTI /CT	1				
	28 ⁽³⁾	3(3)	34 (3)	20 ⁽³⁾	1/0	111/31					
PMD7	11(2)	14 ⁽²⁾	15 (2)	41 ⁽²⁾	1/0	TTI /ST					
	27 ⁽³⁾	2 ⁽³⁾	33 (3)	19 ⁽³⁾	1/0	112/01					
PMRD	21	24	27	11	0	—	Parallel Master Port read strobe				
	22 ⁽²⁾	25 ⁽²⁾	28 ⁽²⁾	14 ⁽²⁾	0		Parallel Master Port write strope				
	4 ⁽³⁾	7 ⁽³⁾	2 ⁽³⁾	24 ⁽³⁾	Ŭ		T arallel master Fort while strobe				
VBUS	12 ⁽³⁾	15 ⁽³⁾	16 (3)	42 ⁽³⁾	Ι	Analog	USB bus power monitor				
VUSB3V3	20 ⁽³⁾	23 ⁽³⁾	26 ⁽³⁾	10 ⁽³⁾	Р	_	USB internal transceiver supply. This pin must be connected to VDD.				
VBUSON	22 ⁽³⁾	25 ⁽³⁾	28 ⁽³⁾	14 ⁽³⁾	0		USB Host and OTG bus power control output				
D+	18 ⁽³⁾	21 ⁽³⁾	24 ⁽³⁾	8 ⁽³⁾	I/O	Analog	USB D+				
D-	19 ⁽³⁾	22 ⁽³⁾	25 ⁽³⁾	9(3)	I/O	Analog	USB D-				
Legend:	CMOS = C	MOS compa	atible input	or output		Analog =	Analog input P = Power				
	ST = Schmi	tt Trigger in	put with CN	NOS levels		O = Outp	but I=Input				
	L = L	nput buffer				PPS = P	eripheral Pin Select — = N/A				

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH)

NOTES:

REGISTER 10-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0 U-0	
51.24	_	—	—		_	—	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.9	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—	_		_	—	_	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLIE	ATTACHIE	RESIMEIE		TRNIE	SOFIE		URSTIE ⁽²⁾
	OTALLIL			IDELIE		OOLIE	OLIVIL	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL	Handshake	Interrupt Enable	bit

- 1 = STALL interrupt is enabled
- 0 = STALL interrupt is disabled
- bit 6 ATTACHIE: ATTACH Interrupt Enable bit
 - 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled
- bit 5 **RESUMEIE:** RESUME Interrupt Enable bit
 - 1 = RESUME interrupt is enabled
 - 0 = RESUME interrupt is disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
 - 1 = Idle interrupt is enabled
 - 0 = Idle interrupt is disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
 - 1 = TRNIF interrupt is enabled
 - 0 = TRNIF interrupt is disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
 - 1 = SOFIF interrupt is enabled
 - 0 = SOFIF interrupt is disabled
- bit 1 **UERRIE:** USB Error Interrupt Enable bit⁽¹⁾
 - 1 = USB Error interrupt is enabled
 - 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt is enabled
 - 0 = URSTIF interrupt is disabled

DETACHIE: USB Detach Interrupt Enable bit⁽³⁾

- 1 = DATTCHIF interrupt is enabled
- 0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE (U1IE<1>) bit must be set.

- 2: Device mode.
- 3: Host mode.

11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Key features of this module include:

- · Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

11.1 Parallel I/O (PIO) Ports

All port pins have 10 registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Pin Diagrams"** section for the available pins and their functionality.

11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.

11.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX1XX/2XX 28/36/44-pin Family devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.

An additional control register (CNCONx) is shown in Register 11-3.

11.2 CLR, SET and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR, or INV register, the base register must be read.

TABLE 11-4: PORTB REGISTER MAP

ess										Bits									
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6100	ANSEL B	31:16	_	—	—	—	-	-	_	—	-	-	—	_	_	—	—	_	0000
0100	,	15:0	ANSB15	ANSB14	ANSB13	ANSB12 ⁽²⁾	_		—	—	_	_	—	—	ANSB3	ANSB2	ANSB1	ANSB0	E00F
6110	TRISB	31:16	_	_	_	—	—	—	—	—	—		—	_	—	—	—	—	0000
		15:0	TRISB15	TRISB14	TRISB13	TRISB12(2)	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6(2)	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6120	PORTB	31:16	_		_		_	—	_	_	_		_						0000
		15:0	RB15	RB14	RB13	RB12(2)	RB11	RB10	RB9	RB8	RB7	RC6(2)	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
6130	LATB	31:16		-	-		-	-	—	-			-	-	—	—	-	—	0000
		15:0	LAIB15	LAIB14	LAIB13	LAIB12(2)	LAI B11	LAIB10	LATB9	LAI B8	LAIB7	LAIB6(2)	LAI B5	LAI B4	LATB3	LATB2	LAIB1	LAIBO	XXXX
6140	ODCB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
	ODOD	15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB1	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCR0	0000
6150	CNPUB	31:16																	0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12-	CNPUBIT	CNPUBIU	CNPUB9	CNPUB8	CNPUB/	CNPUB6-	CNP0B5	CNPUB4	CNP0B3	CNP0B2	CNPUBI	CNPUBU	0000
6160	CNPDB	31:10																	0000
		15.0	CNPDB15	CINPUB14	CNPDB13	CNPDB12	CNPDBTI	CNPDBIU	CNPDB9	CNPDBo	CNPDB/	CNPDB0	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDBI	CNPDBU	0000
6170	CNCONB	15.0			SIDI														0000
		31.16																	0000
6180	CNENB	15.0	CNIEB15	CNIEB14	CNIEB13	CNIEB11(2)	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6(2)	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
		31:16	_	_	_	_	_	_				_							0000
6190	CNSTATB		CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	
		15:0	STATB15	STATB14	STATB13	STATB12(2)	STATB11	STATB10	STATB9	STATB8	STATB7	STATB6 ⁽²⁾	STATB5	STATB4	STATB3	STATB2	STATB1	STATB0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This bit is not available on PIC32MX2XX devices. The reset value for the TRISB register when this bit is not available is 0x0000EFBF.

REGISTI	ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)													
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)													
	1 = Frame synchronization pulse coincides with the first bit clock													
bit 16	ENHBITE: Enhanced Buffer Enable bit ⁽²⁾													
Sit 10	1 = Enhanced Buffer mode is enabled													
	0 = Enhanced Buffer mode is disabled													
bit 15	ON: SPI Peripheral On bit ⁽¹⁾													
	1 = SPI Peripheral is enabled													
hit 14	Unimplemented: Read as '0'													
bit 13	SIDL: Stop in Idle Mode bit													
	1 = Discontinue module operation when the device enters Idle mode													
	0 = Continue module operation when the device enters Idle mode													
bit 12	DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register.													
	 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register 0 = SDOx pin is controlled by the module 													
bit 11-10	MODE<32.16>: 32/16-Bit Communication Select bits													
	When AUDEN = 1:													
	MODE32 MODE16 Communication													
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame													
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame													
	0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame													
	When AUDEN = 0:													
	MODE32 MODE16 Communication													
	1 x 32-bit													
	0 0 8-bit													
bit 9	SMP: SPI Data Input Sample Phase bit													
	Master mode (MSTEN = 1):													
	 Input data sampled at end of data output time Input data sampled at middle of data output time 													
	Slave mode (MSTEN = 0):													
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.													
	To write a '1' to this bit, the MSTEN value = 1 must first be written.													
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾													
	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit) 0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)													
bit 7	SSEN: Slave Select Enable (Slave mode) bit													
bit i	$1 = \overline{SSx}$ pin used for Slave mode													
	$0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.													
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾													
	1 = 1 dle state for clock is a high level; active state is a low level 0 = 1 dle state for clock is a low level; active state is a high level													
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in													
	the SYSCLK cycle immediately following the instruction that clears the module's ON bit.													
2:	This bit can only be written when the ON bit = 0.													
3:	I his bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).													
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value													
	of CKP.													

2

	-		-		_	-					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	_	—	—	—			
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0			
23:10	—	—	—	—	_	—	—	—			
45.0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	—	PTEN14	—	—	_	PTEN<10:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				PTEN	<7:0>						

REGISTER 20-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN14:** PMCS1 Address Port Enable bits
 - 1 = PMA14 functions as either PMA14 or PMCS1⁽¹⁾
 - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
 - 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O

bit 1-0 PTEN<1:0>: PMALH/PMALL Address Port Enable bits

- 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
- 0 = PMA1 and PMA0 pads functions as port I/O
- Note 1: The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

22.1 **ADC Control Registers**

TABLE 22-1: ADC REGISTER MAP

ess										В	its								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	_	—	—	_	_	—	_	_	_	_	—	—	_	0000
9000	ADICONT	15:0	ON	_	SIDL	—	_		FORM<2:0	>		SSRC<2:0	>	CLRASAM	_	ASAM	SAMP	DONE	0000
0010	AD1CON2(1)	31:16		—		_	—	—	—	_	—		—	—	—	—	—	—	0000
9010	ADICONZ	15:0		VCFG<2:0>	>	OFFCAL	—	CSCNA	—	—	BUFS	—		SMPI	<3:0>	-	BUFM	ALTS	0000
9020		31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000
0020		15:0	ADRC	—				SAMC<4:0>	>					ADCS	\$<7:0>				0000
9040	AD1CHS(1)	31:16	CH0NB	—	—	—		CH0SI	3<3:0>		CH0NA	—	—	—		CH0S	A<3:0>	-	0000
00.0		15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
9050	AD1CSSL ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16		ADC Result Word 0 (ADC1BUF0<31:0>)															
		15:0																	
9080	ADC1BUF1	31:16	ADC Result Word 1 (ADC1BUF1<31:0>)																
		15:0	000(0000			
9090	ADC1BUF2	31:10							ADC Re	sult Word 2	(ADC1BUF	2<31:0>)							0000
		10.0																	0000
90A0	ADC1BUF3	15.0							ADC Re:	sult Word 3	(ADC1BUF	3<31:0>)							0000
		31.16																	0000
90B0	ADC1BUF4	15.0							ADC Re	sult Word 4	(ADC1BUF	4<31:0>)							0000
		31 16																	0000
90C0	ADC1BUF5	15.0							ADC Re	sult Word 5	(ADC1BUF	5<31:0>)							0000
		31:16																	0000
90D0	ADC1BUF6	15:0							ADC Re	sult Word 6	(ADC1BUF	6<31:0>)							0000
		31:16																	0000
90E0	ADC1BUF7	15:0							ADC Re	sult Word 7	(ADC1BUF	7<31:0>)							0000
		31:16																	0000
90F0	ADC1BUF8	15:0							ADC Re	sult Word 8	(ADC1BUF	8<31:0>)							0000
0400		31:16										· · · · · · · · · · · · · · · · · · ·							0000
9100	ADC1BUF9	15:0							ADC Re	suit word 9	(ADC1BUF	9<31:0>)							0000
0110		31:16								ult Mord A		A-21.0>							0000
9110	ADCIBURA	15:0							ADC Res	Suit Word A	(ADC IBUF	ASJ1:U>)							0000
Lege	id: x = u	nknowr	n value on F	Reset; — =	unimpleme	nted, read a	s '0'. Rese	t values are	shown in h	exadecima									

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV registers" for details. Note 1:

24.1 Comparator Voltage Reference Control Register

Virtual Address (BF80_#)		Bit Range		Bits															
	Register Name ⁽¹⁾		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16	_	—	—	_	_	—	_	_	_	—	-	_	-	—	—	_	0000
9800	CVRCON	15:0	ON	_		_	_	_	_	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

27.2 Configuration Registers

TABLE 27-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Virtual Address (BFC0_#)	Register Name	Bit Range	Ø Bits														ú		
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0BF0		31:16	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	—	—	—	—	—	—	_	—	_	-	_	xxxx
	DEVORGO	15:0	USERID<15:0> xx												xxxx				
		31:16	—	—	_	—	—	—	-	—	—	—	—	_	—	FP	LLODIV<2:()>	xxxx
UDF4	DEVCFG2	15:0	UPLLEN ⁽¹⁾	—	_	—	—	UPL	LIDIV<2:0>	_ (1)	—	FF	PLLMUL<2:)>	—	FF	PLLIDIV<2:0	>	xxxx
		31:16	—	—	_	—	—	—	FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	—		١	NDTPS<4:0	>		XXXX
0BF8	DEVCEGI	15:0	FCKSM	<1:0>	FPBD	IV<1:0>	—	OSCIOFNC	POSCM	OD<1:0>	IESO	—	FSOSCEN	_	—	- FNOSC<2:0>		•	XXXX
0BFC		31:16	—	—	_	CP	—	—	-	BWP	—	—	—	_	—	F	WP<8:6>(2)		XXXX
	DEVCEGO	15:0			PWP<	:5:0>			-	_	_	_	_	ICESE	L<1:0>	JTAGEN	DEBUG	6<1:0>	XXXX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on PIC32MX2XX devices.

2: PWP<8:7> are only available on devices with 256 KB of Flash.

TABLE 27-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

Virtual Address (BF80_#)	Register Name	Bit Range	Bits												(E				
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽
F000	DEVID	31:16	VER<3:0> DEVID<27:16>										xxxx ⁽¹						
F220		15:0	DEVID<15:0> xx:											xxxx ⁽¹					
F000		31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
F200	CFGCON	15:0	_	_	IOLOCK	PMDLOCK	_	_	_	_	_	—	_	_	JTAGEN	_	_	TDOEN	000B
F230	OVOKEV(3)	31:16								SAGKE.	V<31.05								0000
	SISKEN	15:0								STORE	1~51.02								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	_	—	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	_	—	—	—	—	—	_	—
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	—	—		_
7.0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-1	R/W-1
7:0	—	_	_	_	JTAGEN	_		TDOEN

REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logonan							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-14 Unimplemented: Read as '0'

- bit 13 IOLOCK: Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed.
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed.
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed.
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed.

bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '1'
- bit 0 **TDOEN:** TDO Enable for 2-Wire JTAG bit
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	_		ns	—			
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—		ns	—			
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32			
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_		ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_		ns	See parameter DO31			
SP35	TSCH2DOV,	SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V			
	TscL2DoV	SCKx Edge	_	_	20	ns	VDD < 2.7V			
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	—			
SP50	TssL2scH, TssL2scL	$\overline{\operatorname{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	—			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—	_	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2		_	ns	_			
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	-	ns	—			
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—			
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	_			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_	_	ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	20	ns	VDD > 2.7V			
	TscL2DoV	SCKx Edge	—	—	30	ns	VDD < 2.7V			
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.