Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | | • 11 | | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 50MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | Number of I/O | 35 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | FLASH | | EPROM Size | - | | RAM Size | 8K x 8 | | /oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 13x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-TQFP | | Supplier Device Package | 44-TQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f032d-50i-pt | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### TABLE 4: PIN NAMES FOR 28-PIN USB DEVICES 28-PIN SOIC, SPDIP, SSOP (TOP VIEW) $^{(1,2,3)}$ 1 28 1 28 1 28 SSOP SOIC SPDIP PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B | Pin# | Full Pin Name | |------|--| | 1 | MCLR | | 2 | PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 | | 3 | PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 | | 4 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 | | 5 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 | | 6 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 | | 7 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 | | 8 | Vss | | 9 | OSC1/CLKI/RPA2/RA2 | | 10 | OSC2/CLKO/RPA3/PMA0/RA3 | | 11 | SOSCI/RPB4/RB4 | | 12 | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 | | 13 | VDD | | 14 | TMS/RPB5/USBID/RB5 | | Pin# | Full Pin Name | |------|--| | 15 | VBUS | | 16 | TDI/RPB7/CTED3/PMD5/INT0/RB7 | | 17 | TCK/RPB8/SCL1/CTED10/PMD4/RB8 | | 18 | TDO/RPB9/SDA1/CTED4/PMD3/RB9 | | 19 | Vss | | 20 | VCAP | | 21 | PGED2/RPB10/D+/CTED11/RB10 | | 22 | PGEC2/RPB11/D-/RB11 | | 23 | Vusb3v3 | | 24 | AN11/RPB13/CTPLS/PMRD/RB13 | | 25 | CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14 | | 26 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 27 | AVss | | 28 | AVDD | #### Note 1 - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions. - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information - 3: Shaded pins are 5V tolerant. #### 3.2 Architecture Overview The MIPS32 M4K processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core: - · Execution Unit - Multiply/Divide Unit (MDU) - System Control Coprocessor (CP0) - Fixed Mapping Translation (FMT) - · Dual Internal Bus interfaces - · Power Management - MIPS16e[®] Support - · Enhanced JTAG (EJTAG) Controller #### 3.2.1 EXECUTION UNIT The MIPS32 M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline. The execution unit includes: - 32-bit adder used for calculating the data address - Address unit for calculating the next instruction address - Logic for branch determination and branch target address calculation - · Load aligner - Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results - Leading Zero/One detect unit for implementing the CLZ and CLO instructions - Arithmetic Logic Unit (ALU) for performing bitwise logical operations - · Shifter and store aligner #### 3.2.2 MULTIPLY/DIVIDE UNIT (MDU) The MIPS32 M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions. The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice. The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed. Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks. TABLE 3-1: MIPS32® M4K® PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES | Opcode | Operand Size (mul rt) (div rs) | Latency | Repeat Rate | |-------------------------|--------------------------------|---------|-------------| | MULT/MULTU, MADD/MADDU, | 16 bits | 1 | 1 | | MSUB/MSUBU | 32 bits | 2 | 2 | | MUL | 16 bits | 2 | 1 | | | 32 bits | 3 | 2 | | DIV/DIVU | 8 bits | 12 | 11 | | | 16 bits | 19 | 18 | | | 24 bits | 26 | 25 | | | 32 bits | 33 | 32 | #### REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾ ``` 1111 = Reserved; do not use ``` • • 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 **= FRC** 0010 = Posc 0001 = PBCLK 0000 = SYSCLK - Note 1: The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result. - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001. - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'. #### REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED) - bit 6 CRCAPP: CRC Append Mode bit⁽¹⁾ - 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA - 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination - bit 5 CRCTYP: CRC Type Selection bit - 1 = The CRC module will calculate an IP header checksum - 0 = The CRC module will calculate a LFSR CRC - bit 4-3 Unimplemented: Read as '0' - bit 2-0 CRCCH<2:0>: CRC Channel Select bits - 111 = CRC is assigned to Channel 7 - 110 = CRC is assigned to Channel 6 - 101 = CRC is assigned to Channel 5 - 100 = CRC is assigned to Channel 4 - 011 = CRC is assigned to Channel 3 - 010 = CRC is assigned to Channel 2 - 001 = CRC is assigned to Channel 1 - 000 = CRC is assigned to Channel 0 - Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set. #### REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED) - bit 1 **PPBRST:** Ping-Pong Buffers Reset bit - 1 = Reset all Even/Odd buffer pointers to the EVEN Buffer Descriptor banks - 0 = Even/Odd buffer pointers are not Reset - bit 0 USBEN: USB Module Enable bit (4) - 1 = USB module and supporting circuitry is enabled0 = USB module and supporting circuitry is disabled - **SOFEN:** SOF Enable bit⁽⁵⁾ - 1 = SOF token is sent every 1 ms - 0 = SOF token is disabled - **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15). - **2:** All host control logic is reset any time that the value of this bit is toggled. - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is
cleared. - 4: Device mode. - 5: Host mode. TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP | sss | | | | | | | | | | Ві | ts | | | | | | | | | |-----------------------------|----------------------|---------------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-----------|----------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FB00 | RPA0R | 31:16
15:0 | _ | | _ | | | | _ | | | _ | _ | _ | - | —
RPA0 | - | _ | 0000 | | | | 31:16 | | | | | | | | | | | | _ | _ | _ | _ | _ | 0000 | | FB04 | RPA1R | 15:0 | _ | _ | _ | | _ | | | _ | | _ | _ | _ | | RPA1 | <3:0> | | 0000 | | | | 31:16 | _ | | _ | | _ | | _ | _ | | _ | _ | _ | | _ | _ | _ | 0000 | | FB08 | RPA2R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA2 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | FB0C | RPA3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA3 | <3:0> | | 0000 | | ED40 | RPA4R | 31:16 | _ | 1 | _ | - | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB10 | RPA4R | 15:0 | _ | | _ | _ | _ | | _ | _ | | _ | _ | _ | | RPA4 | <3:0> | | 0000 | | FB20 | RPA8R ⁽¹⁾ | 31:16 | _ | 1 | _ | - | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | 1 020 | IN AOIN. | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA8 | <3:0> | | 0000 | | FB24 | RPA9R ⁽¹⁾ | 31:16 | _ | _ | _ | | _ | | _ | _ | | _ | _ | _ | - | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA9 | <3:0> | | 0000 | | FB2C | RPB0R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | 0000 | | | | 15:0 | | _ | _ | | | | | | | | | | | RPB0 | | | 0000 | | FB30 | RPB1R | 31:16
15:0 | | | _ | | | | | | | | | | | RPB1 | -2:0> | _ | 0000 | | | | 31:16 | | | _ | | | | | | | _ | _ | _ | _ | — KFB1 | <u> </u> | _ | 0000 | | FB34 | RPB2R | 15:0 | _ | | _ | | | | | | | _ | _ | | | RPB2 | | _ | 0000 | | | | 31:16 | _ | | _ | | _ | | | _ | | _ | _ | _ | _ | — | _ | l _ | 0000 | | FB38 | RPB3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB3 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB3C | RPB4R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB4 | <3:0> | | 0000 | | ED 40 | DDDCD | 31:16 | _ | 1 | _ | | _ | | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB40 | RPB5R | 15:0 | _ | | _ | | _ | - | _ | _ | | _ | _ | _ | | RPB5 | <3:0> | | 0000 | | FB44 | RPB6R ⁽²⁾ | 31:16 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1 044 | INF DOIN, 7 | 15:0 | _ | 1 | _ | 1 | - | 1 | - | - | 1 | _ | _ | _ | | RPB6 | <3:0> | | 0000 | | FB48 | RPB7R | 31:16 | _ | | _ | | _ | | _ | _ | | _ | | | _ | _ | _ | _ | 0000 | | . 2 .0 | 2 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | RPB7 | <3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. This register is only available on 44-pin devices. Note 1: This register is only available on PIC32MX1XX devices. 2: This register is only available on 36-pin and 44-pin devices. ### 12.2 Timer1 Control Registers #### TABLE 12-1: TIMER1 REGISTER MAP | ess | | е | | | | | | | | Ві | ts | | | | | | | | " | |---------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|--------|------|-------|--------|------|-------|------|------|------------| | Virtual Addre
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 0600 | T1CON | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0600 | TICON | 15:0 | ON | _ | SIDL | TWDIS | TWIP | _ | _ | _ | TGATE | _ | TCKPS | S<1:0> | _ | TSYNC | TCS | _ | 0000 | | 0610 | TMR1 | 31:16 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0010 | TIVITY | 15:0 | | | | | | | | TMR1 | <15:0> | | | | | | | | 0000 | | 0620 | PR1 | 31:16 | _ | _ | - | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | | _ | 0000 | | 0020 | 1 181 | 15:0 | | | | | | | | PR1< | 15:0> | | | | | | | | FFFF | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. PIC32MX1XX/2XX 28/36/44-PIN FAMILY #### SERIAL PERIPHERAL 17.0 **INTERFACE (SPI)** Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial **Peripheral** Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontrollers. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola® SPI and SIOP interfaces. Some of the key features of the SPI module are: - Master mode and Slave mode support - · Four clock formats - Enhanced Framed SPI protocol support - · User-configurable 8-bit, 16-bit and 32-bit data width - Separate SPI FIFO buffers for receive and transmit - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width - · Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer - · Operation during Sleep and Idle modes - Audio Codec Support: - I²S protocol - Left-justified - Right-justified - PCM **FIGURE 17-1:** SPI MODULE BLOCK DIAGRAM ### 18.1 I2C Control Registers #### TABLE 18-1: I2C1 AND I2C2 REGISTER MAP | ess | | | | | | | | | | Bi | ts | | | | | | | | | |-----------------------------|---------------------------------|---------------|---------|--------|-------|--------|--------|-------|--------|-------|-------------------|-------------|------------|--------------|-----------|------|------|------|------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5000 | I2C1CON | 31:16 | | _ | _ | _ | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | 0000 | | | | 15:0 | ON | | SIDL | SCLREL | STRICT | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | 5010 | I2C1STAT | 31:16 | | | | _ | | _ | - | - | | - | | _ | _ | - | _ | | 0000 | | | | | ACKSTAT | TRSTAT | | _ | | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D_A | Р | S | R_W | RBF | TBF | 0000 | | 5020 | I2C1ADD | 31:16 | _ | | | _ | | | _ | _ | _ | _ | <u> </u> | <u> </u> | _ | _ | _ | _ | 0000 | | | | 15:0 | _ | | | _ | | | | | | | Address | Register | | | | | 0000 | | 5030 | I2C1MSK | 31:16
15:0 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | —
!-D!-t | _ | _ | _ | _ | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | | | | | Address Ma | ask Register | | | | | 0000 | | 5040 | I2C1BRG | 15:0 | _ | | _ | _ | _ | _ | _ | | | d Bata Car | orator Boa | inter | | _ | _ | _ | 0000 | | | | 31:16 | _ | _ | | _ | | | _ | _ | Бац | id Rate Ger | erator Reg | Islei | | | | _ | 0000 | | 5050 | I2C1TRN | 15:0 | _ | | | | | _ | | | | _ | | Transmit | Pogistor. | _ | _ | _ | 0000 | | | | 31:16 | _ | | | _ | | | _ | | _ | _ | _ | | Register | _ | _ | _ | 0000 | | 5060 | I2C1RCV | 15:0 | _ | | | | | | | | <u> </u> | _ | | Receive | Pegister | | | | 0000 | | | | 31:16 | | | | | | | | | | _ | _ | | — | _ | _ | _ | 0000 | | 5100 | I2C2CON | 15:0 | ON | | SIDL | SCLREL | STRICT | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | | | 31:16 | | | — | | _ | _ | | _ | _ | — | _ | | _ | _ | _ | _ | 0000 | | 5110 | I2C2STAT | | ACKSTAT | TRSTAT | | _ | | BCL | GCSTAT | ADD10 | IWCOL | I2COV | DΑ | Р | S | R W | RBF | TBF | 0000 | | | | 31:16 | | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | _ | | _ | _ | 0000 | | 5120 | I2C2ADD | 15:0 | _ | | | _ | | _ | | | | | Address | Register | | | | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5130 | I2C2MSK | 15:0 | _ | _ | _ | _ | | _ | | | | | Address Ma | sk Register | | | | | 0000 | | 5440 | 1000000 | 31:16 | _ | 1 | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5140 | I2C2BRG | 15:0 | _ | | _ | _ | | • | • | | Bau | id Rate Ger | erator Reg | ister | | | | | 0000 | | 5150 | I2C2TRN | 31:16 | _ | | | _ | ı | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5 150 | 12021KN | 15:0 | _ | | | _ | I | | | _ | Transmit Register | | | | | 0000 | | | | | 5160 | I2C2RCV | 31:16 | _ | _ | _ | _ | - | _ | _ | _ | | _ | _ | _ | | | _ | _ | 0000 | | 3 100 | IZUZRUV | 15:0 | _ | _ | _ | _ | _ | _ | _ | | | | | Receive | Register | | | | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. #### REGISTER 21-3: RTCTIME: RTC TIME VALUE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------
-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | | 31:24 | | _ | HR10 | <1:0> | | HR01 | <3:0> | | | 22.46 | U-0 | R/W-x | 23:16 | _ | | MIN10<2:0> | | | MIN01 | <3:0> | | | 45.0 | U-0 | R/W-x | 15:8 | _ | | SEC10<2:0> | | | SEC01 | <3:0> | | | 7.0 | U-0 | 7:0 | _ | _ | _ | _ | _ | _ | _ | _ | #### Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-30 Unimplemented: Read as '0' bit 29-28 HR10<1:0>: Binary-Coded Decimal Value of Hours bits, 10s place digit; contains a value from 0 to 2 bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9 bit 23 Unimplemented: Read as '0' bit 22-20 MIN10<2:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digit; contains a value from 0 to 5 bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9 bit 15 Unimplemented: Read as '0' bit 14-12 SEC10<2:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digit; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9 bit 7-0 Unimplemented: Read as '0' **Note:** This register is only writable when RTCWREN = 1 (RTCCON<3>). #### REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | - | _ | _ | | 45.0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | R-0 | | 15:8 | ON ⁽¹⁾ | COE | CPOL ⁽²⁾ | _ | _ | _ | _ | COUT | | 7.0 | R/W-1 | R/W-1 | U-0 | R/W-0 | U-0 | U-0 | R/W-1 | R/W-1 | | 7:0 | EVPOL | _<1:0> | _ | CREF | _ | _ | CCH | <1:0> | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** Comparator ON bit⁽¹⁾ 1 = Module is enabled. Setting this bit does not affect the other bits in this register 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register bit 14 **COE:** Comparator Output Enable bit 1 = Comparator output is driven on the output CxOUT pin 0 = Comparator output is not driven on the output CxOUT pin bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾ 1 = Output is inverted 0 = Output is not inverted bit 12-9 Unimplemented: Read as '0' bit 8 **COUT:** Comparator Output bit 1 = Output of the Comparator is a '1' 0 = Output of the Comparator is a '0' bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output 00 = Comparator interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 **CREF:** Comparator Positive Input Configure bit 1 = Comparator non-inverting input is connected to the internal CVREF 0 = Comparator non-inverting input is connected to the CxINA pin bit 3-2 Unimplemented: Read as '0' bit 1-0 **CCH<1:0>:** Comparator Negative Input Select bits for Comparator 11 = Comparator inverting input is connected to the IVREF 10 = Comparator inverting input is connected to the CxIND pin 01 = Comparator inverting input is connected to the CxINC pin 00 = Comparator inverting input is connected to the CxINB pin **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>. | 1XX/2X | X 28/36/ | 44-PIN | FAMIL' | <u> </u> | | |--------|----------|----------------|----------------------|-----------------------------|-----------------------------| 1XX/2XX 28/36/ | 1XX/2XX 28/36/44-PIN | 1XX/2XX 28/36/44-PIN FAMILY | 1XX/2XX 28/36/44-PIN FAMILY | #### 30.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. #### **Absolute Maximum Ratings** #### (See Note 1) | Ambient temperature under bias | 40°C to +105°C | |---|--------------------------| | Storage temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | 0.3V to +4.0V | | Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3) | 0.3V to (VDD + 0.3V) | | Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3) | 0.3V to +5.5V | | Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3) | 0.3V to +3.6V | | Voltage on D+ or D- pin with respect to Vusb3v3 | 0.3V to (VUSB3V3 + 0.3V) | | Voltage on VBUS with respect to VSS | 0.3V to +5.5V | | Maximum current out of Vss pin(s) | 300 mA | | Maximum current into VDD pin(s) (Note 2) | 300 mA | | Maximum output current sunk by any I/O pin | 15 mA | | Maximum output current sourced by any I/O pin | 15 mA | | Maximum current sunk by all ports | 200 mA | | Maximum current sourced by all ports (Note 2) | 200 mA | - Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2). - 3: See the "Pin Diagrams" section for the 5V tolerant pins. FIGURE 30-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) ## 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | 3 | |------------------------|-------|------|-------------|------| | Dimensi | MIN | NOM | MAX | | | Number of Pins | N | | 28 | | | Pitch | е | | 0.65 BSC | | | Overall Height | Α | 0.80 | 0.90 | 1.00 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Contact Thickness | A3 | | 0.20 REF | | | Overall Width | Е | | 6.00 BSC | | | Exposed Pad Width | E2 | 3.65 | 3.70 | 4.20 | | Overall Length | D | | 6.00 BSC | | | Exposed Pad Length | D2 | 3.65 | 3.70 | 4.20 | | Contact Width | b | 0.23 | 0.30 | 0.35 | | Contact Length | L | 0.50 | 0.55 | 0.70 | | Contact-to-Exposed Pad | K | 0.20 | - | _ | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-105B # 36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **DETAIL A** | Units | | N | IILLIMETER | S | | |-------------------------|--------|----------|-------------------|-------|--| | Dimension | Limits | MIN | NOM | MAX | | | Number of Pins | Ν | | 36 | | | | Number of Pins per Side | ND | 10 | | | | | Number of Pins per Side | NE | 8 | | | | | Pitch | е | 0.50 BSC | | | | | Overall Height | Α | 0.80 | 0.90 | 1.00 | | | Standoff | A1 | 0.025 | - | 0.075 | | | Overall Width | Е | | 5.00 BSC | | | | Exposed Pad Width | E2 | 3.60 | 3.75 | 3.90 | | | Overall Length | D | 5.00 BSC | | | | | Exposed Pad Length | D2 | 3.60 | 3.75 | 3.90 | | | Contact Width | b | 0.20 | 0.25 | 0.30 | | | Contact Length | L | 0.20 | 0.25 | 0.30 | | | Contact-to-Exposed Pad | K | 0.20 | - | - | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without
tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-187C Sheet 2 of 2 #### APPENDIX A: REVISION HISTORY #### Revision A (May 2011) This is the initial released version of this document. #### **Revision B (October 2011)** The following two global changes are included in this revision: - All packaging references to VLAP have been changed to VTLA throughout the document - · All references to VCORE have been removed - All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed - V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables This revision includes the addition of the following devices: - PIC32MX130F064B - PIC32MX230F064B - PIC32MX130F064C - PIC32MX230F064C - PIC32MX130F064D - PIC32MX230F064D - PIC32MX150F128B - PIC32MX250F128B - PIC32MX150F128C - PIC32MX250F128C - PIC32MX150F128D - PIC32MX250F128D Text and formatting changes were incorporated throughout the document. All other major changes are referenced by their respective section in Table A-1. #### TABLE A-1: MAJOR SECTION UPDATES | Section | Update Description | |--|---| | "32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog" | Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2). | | | Added the SPDIP package reference (see Table 1, Table 2, and "Pin Diagrams"). | | | Added the new devices to the applicable pin diagrams. | | | Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices. | | 1.0 "Device Overview" | Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1). | | | Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1). | | 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers" | Updated the Recommended Minimum Connection diagram (see Figure 2-1). | #### **INDEX** | AC Characteristics | Numerics | | Core Exception Types | | |--|---------------------------------------|-----|--|-----| | A C Characteristics | 50 MHz Electrical Characteristics | | | | | AC Characteristics | ۸ | | | | | 10-Bit Conversion Rate Parameters | | | | | | ADC Specifications | | | | | | Analog-e-D-Bytal Conversion Requirements 292 EJTAG Timing Requirements 300 Internal PRC Accuracy 271 Internal RC | | | | | | ELTAG Timing Requirements 300 Internal FRC Accuracy 271 Internal RC 272 Internal RC Accuracy 272 Internal RC Accuracy 273 Internal RC Accuracy 274 Internal RC Accuracy 275 Internal RC Accuracy 276 Internal RC Accuracy 276 Internal RC Accuracy 277 Internal RC Accuracy 278 Internal RC Accuracy 279 Internal RC Accuracy 279 Internal RC Accuracy 270 | · | | Customer Support | 341 | | Internal FRC Accuracy | | | D | | | Mineral RC Accuracy | | | DC and AC Characteristics | | | OTG Electrical Specifications 298 Parallel Master Port Read Requirements 297 Parallel Master Port Read Requirements 298 Parallel Master Port Write Requirements 298 Parallel Master Port Write Requirements 298 Parallel Stave Port Master Port Write Requirements 298 Parallel Master Port Write Requirements 259 Power-Down Current (IPD) 262 303 Development Support (IPD) 262 Power-Down Current (IPD) 303 Development Support (IPD) 262 Power-Down Current (IPD) 303 Development Support S | | | | 307 | | Parallel Master Port Note 295 | • | | | | | Parallel Master Port Write 298 Parallel Master Port Write Requirements 298 Parallel Master Port Write Requirements 298 Parallel Slave Port Requirements 298 Power-Down Current (IPD) 282 Power-Down Current (IPD) 282 Power-Down Current (IPD) 303 304 Power-Down Current (IPD) 304 Power-Down Current (IPD) 304 | • | | | | | Parallel Master Port Write Requirements | | | · | • | | Parallel Slave Port Requirements 256 | | | | | | Part | • | | | | | Analog-to-Digital Converter (ADC) | | | | | | DC Characteristics (50 MHz) 302 | | | | | | Idle Current (IDLE) | Analog-to-Digital Converter (ADC) | 209 | | | | Power-Down Current (IPD) 303 | Assembler | | · · · · · · · · · · · · · · · · · · · | | | Development Support. | MPASM Assembler | 254 | | | | Direct Memory Access (DMA) Controller | D | | | | | ADC Module. 209 Comparator I/O Operating Modes 219 Comparator Voltage Reference 223 Connections for On-Chip Voltage Regulator 250 Core and Peripheral Modules 19 CPU 33 CTMU Configurations 277 DMA. 83 I2C Circuit. 174 Input Capture 157 Interrupt Controller 57 Interrupt Controller 58 Reset System 59 RECC 199 RESET System 59 RECC 199 RESET System 55 RIMER 2/3/4/5 (16-Bit) 147 Typical Multiplexed Port Structure 157 UART 191 WDT and Power-up Timer 153 Brown-out Reset (BOR) and On-Chip Voltage Regulator 250 CC Compilers MPLAB C18 CC Compilers MPLAB C18 Comparator Wodule 219 Comparator Voltage Reference (CVref 223 Configuring Analog Port Pins 28 CPU Architecture Overview 34 Electrical Characteristics 257 AC 269 External Clock Timer1 11ming Requirements 276 Timing Requirements 276 Timing Requirements 270 External Clock (50 MHz) 10ming Requirements 270 Timing Requirements 270 External Clock 10ming Requirements 270 External Clock 10ming Requirements 270 Timing Requirements 270 External Clock 10ming | | | · ·· | | | Comparator I/O Operating Modes | | | Direct Memory Access (DMA) Controller | 03 | | Comparator Voltage Reference 223
Connections for On-Chip Voltage Regulator 250 Core and Peripheral Modules 19 CPU 33 CTMU Configurations 19 CPU 33 CTMU Configurations 277 DMA 83 12C Circuit 174 Input Capture 157 Interrupt Controller 63 JTAG Programming, Debugging and Trace Ports 250 Output Compare Module 611 PMP Pinout and Connections to External Devices 189 Reset System 279 Norther Module 143 Timer (2) 3/4/5 (16-Bit) 147 Typical Multiplexed Port Structure 127 UART 181 WDT and Power-up Timer 153 Brown-out Reset (BOR) and On-Chip Voltage Regulator 250 CC Compilers MPLAB C18 Comparator Module 219 Comparator Voltage Reference (CVref 223 Configuration Bit 239 Configuration Bit 239 Configuration Bit 230 CPU Architecture Overview 34 415 KB Flash) 40 PIC32/MX130/230 Devices (16 KB RAM, 25 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX130/230 Devices (21 KB RAM, 45 KB Flash) 40 PIC32/MX | | | E | | | Comparator Voltage Reterence 225 Cone and Peripheral Modules 19 CPU 33 33 CTMU Configurations 19 CPU 33 33 CTMU Configurations 277 Time Measurement 227 DMA 83 12C Circuit 174 Input Capture 157 Interrupt Controller 63 JTAG Programming, Debugging and Trace Ports 250 Output Compare Module 165 Timer1 199 SPI Module 165 Timer1 199 SPI Module 165 Timer2/3/4/5 (16-Bit) 147 Typical Multiplexed Port Structure 127 UART 181 MDT and Power-up Timer 153 Brown-out Reset (BOR) and On-Chip Voltage Regulator 250 CC Compilers MPLAB C18 CC Comparator Voltage Regulator 260 CC Comparator Voltage Reference (CVref 223 Configuration Bit 239 Configuration Bit 239 Configuration Bit 239 Configuration Bit 230 CPU Architecture Overview 34 415 KB Flash) 40 PIC32MX130/230 Devices (16 KB RAM, 45 KB Flash) 40 PIC32MX130/230 Devices (16 K | | | Electrical Characteristics | 257 | | Cornections Or N-chirp voltage Regulator 290 Core and Peripheral Modules 19 CPU 33 CTMU Configurations 227 DMA 83 I2C Circuit 174 Input Capture 157 Interrupt Controller 63 JTAG Programming, Debugging and Trace Ports 250 Output Compare Module 61 PMP Pinout and Connections to External Devices 89 Reset System 79 RTCC 199 SPI Module 165 Timer1 143 Timer2/3/4/5 (16-Bit) 147 Typical Multiplexed Port Structure 177 UART 181 WDT and Power-up Timer 153 Brown-out Reset (BOR) 3nd On-Chip Voltage Regulator 250 C C Compilers MPLAB C18 C C Compilers MPLAB C18 C C Compilers Specifications 267 C C Compilers Specifications 267 C C Compilers MPLAB C18 C C Compilers MPLAB C18 C C Compilers Specifications 267 C C Compilers Provided Regulator 279 Comparator Voltage Reference (CVref 223 Configurations 240 Cornigurations 277 C MPLAB C18 C C Configurations 277 Timer1 Timing Requirements 276 Timer2 (3, 4, 5 Timing Requirements 276 Timer2, 3, Timer2, 3, 4, 5 Timer2, 3, 4, 5 | | | | | | External Clock Timer Timing Requirements 275 Timer Measurement 275 Timer Measurement 275 Timer Measurement 275 Timer 2,3,4,5 Timing Requirements 276 Requirem | | | | | | CPU Configurations | · | | | | | Time Measurement | | 33 | | 275 | | Timing Requirements | | | | | | External Clock (50 MHz) Timing Requirements 304 | | | | | | Input Capture | | | · · | 270 | | Interrupt Controller | | | | 304 | | Start Star | · | | | | | Output Compare Module. 161 PMP Pinout and Connections to External Devices . 189 Reset System | | | F | | | RTSP Operation | | | Flash Program Memory | 53 | | Reset System | · | | | | | RTCC | | | The second secon | | | SPI Module | · · · · · · · · · · · · · · · · · · · | | I | | | SPI Module 165 Parallel I/O (PIO) 128 Timer1 143 Write/Read Timing 128 Timer2/3/4/5 (16-Bit) 147 Input Change Notification 128 Typical Multiplexed Port Structure 127 Instruction Set 251 UART 181 Instruction Set 251 WDT and Power-up Timer 153 Inter-Integrated Circuit (I2C 173 Brown-out Reset (BOR) 1nter-Integrated Circuit (I2C 173 Internal Voltage Reference Specifications 268 Inter | | | I/O Ports | 127 | | Timer1 | | | | | | Imper 2/3/4/5 (16-Bit) | | | ` , | | | Typical Multiplexed Port Structure | , | | | | | UART | Typical Multiplexed Port Structure | 127 | . • | | | ## Internal Voltage Reference Specifications | | | | | | Internet Address 341 14 | WDT and Power-up Timer | 153 | | | | C Compilers MPLAB C18 | , , | | | | | C IRG, Vector and Bit Location 64 C C Compilers M MPLAB C18 254 Charge Time Measurement Unit. See CTMU. Memory Maps Clock Diagram 74 Comparator (4 KB RAM, 16 KB Flash) 38 PIC32MX120/220 Devices (8 KB RAM, 32 KB Flash) 39 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 PIC32MX130/230 (16 KB RAM, 64 KB Flash) 43 PIC32MX130/230 Devices (16 KB RAM, 64 KB Flash) 40 PIC32MX150/250 Devices (32 KB RAM, 128 KB Flash) 41 | and On-Chip Voltage Regulator | 250 | Interrupt Controller | 63 | | C Compilers MPLAB C18 | C | | | | | MPLAB C18 254 Charge Time Measurement Unit. See CTMU. Memory Maps Clock Diagram 74 Comparator (4 KB RAM, 16 KB Flash) 38 PIC32MX120/220 Devices (8 KB RAM, 32 KB Flash) 39 Comparator Module 219 PIC32MX130/230 (16 KB RAM, 256 KB Flash) 43 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 Configuration Bit 239 PIC32MX130/230 Devices (16 KB RAM, 64 KB Flash) 40 CPU PIC32MX150/250 Devices Architecture Overview 34 (32 KB RAM, 128 KB Flash) 41 | | | | | | Charge Time Measurement Unit. See CTMU. Memory Maps Clock Diagram 74 (4 KB RAM, 16 KB Flash) 38 Comparator PIC32MX120/220 Devices 38 Specifications 267, 268 (8 KB RAM, 32 KB Flash) 39 Comparator Module 219 PIC32MX130/230 39 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 Configuration Bit 239 PIC32MX130/230 Devices (16 KB RAM, 64 KB Flash) 40 CPU PIC32MX150/250 Devices Architecture Overview 34 (32 KB RAM, 128 KB Flash) 41 | • | 054 | M | | | Clock Diagram 74 (4 KB RAM, 16 KB Flash) 38 Comparator Specifications 267, 268 (8 KB RAM, 32 KB Flash) 39 Comparator Module 219 PIC32MX120/220 Devices 39 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 Configuration Bit 239 PIC32MX130/230 Devices 43 Configuring Analog Port Pins 128 (16 KB RAM, 64 KB Flash) 40 CPU PIC32MX150/250 Devices Architecture Overview 34 (32 KB RAM, 128 KB Flash) 41 | | 254 | Memory Maps | | | Clock Diagram /4 (4 KB RAM, 16 KB Flash) 38 Comparator Specifications 267, 268 PIC32MX120/220 Devices Comparator Module 219 (8 KB RAM, 32 KB Flash) 39 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 Configuration Bit 239 PIC32MX130/230 Devices Configuring Analog Port Pins 128 (16 KB RAM, 64 KB Flash) 40 CPU PIC32MX150/250 Devices Architecture Overview 34 (32 KB RAM, 128 KB Flash) 41 | • | | PIC32MX110/210 Devices | | | Comparator Specifications 267, 268 267, 268 (8 KB RAM, 32 KB Flash) 39 | • | 74 | | 38 | | Comparator Module 219 (6 KB RAM, 32 KB Flash) 39 Comparator Voltage Reference (CVref 223 (16 KB RAM, 256 KB Flash) 43 Configuration Bit 239 PIC32MX130/230 Devices Configuring Analog Port Pins 128 (16 KB RAM, 64 KB Flash) 40 CPU PIC32MX150/250 Devices Architecture Overview 34 (32 KB RAM, 128 KB Flash) 41 | · | | | | | Comparator Module | • | - | (8 KB RAM, 32 KB Flash) | 39 | | Comparator Voltage Reference (CVref | | | | | | Configuration Bit | | | | 43 | | Configuring Analog Port Pins | | | | | | Architecture Overview | | 128 | | 40 | | Architecture Overview | | 0.1 | | | | | | | | 41 | | Coprocessor 0 Registers | Coprocessor U Registers | 35 | | | ### Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: Web Address: www.microchip.com **Atlanta** Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit**Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto
Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 **Australia - Sydney** Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 **China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 **China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 **China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 **China - Dongguan** Tel: 86-769-8702-9880 **China - Hangzhou** Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 **China - Hong Kong SAR** Tel: 852-2943-5100 Fax: 852-2401-3431 **China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 **China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 **China - Shenyang** Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 **China - Shenzhen** Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 **China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 **China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 #### ASIA/PACIFIC China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 **China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 **India - Pune** Tel: 91-20-3019-1500 **Japan - Osaka** Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 **Japan - Tokyo** Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 **Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 **Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068 **Philippines - Manila** Tel: 63-2-634-9065 Fax: 63-2-634-9069 **Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850 **Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 **Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Dusseldorf Tel: 49-2129-3766400 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 **Poland - Warsaw** Tel: 48-22-3325737 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 07/14/15