

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f032d-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 9: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/CTED11/PMD2/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/PMD1/RB11	31	OSC2/CLKO/RPA3/RA3
10	AN12/PMD0/RB12	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14	36	RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	41	PGED3/RPB5/PMD7/RB5
20	VREF-/CVREF-/AN1/RPA1/CTED2/RA1	42	PGEC3/RPB6/PMD6/RB6
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

44

1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

NOTES:

FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	_	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHSSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHSSIZ	<7:0>					

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0		CHDSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CHDSIZ	<u>/</u> <7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	-	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CHCSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				CHCSIZ	<u>′</u> <7:0>				

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		—	—	—	_					
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	_	—	_	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8		CHCPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7.0				CHCPTF	R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ISTATE	SEO	PKTDIS ⁽⁴⁾	LIEDDET			PPBRST	USBEN ⁽⁴⁾
	JUNALE	JSTATE SE0 T	TOKBUSY ^(1,5)	000001	TIOSTEIN"	INCOUNEY /		SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = No JSTATE was detected on the
- bit 6 **SE0:** Live Single-Ended Zero flag bit 1 = Single-Ended Zero was detected on the USB
 - 0 = No Single-Ended Zero was detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing is disabled (set upon SETUP token received)
 - 0 = Token and packet processing is enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token is being executed by the USB module
 - 0 = No token is being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated
- bit 3 HOSTEN: Host Mode Enable bit⁽²⁾
 - 1 = USB host capability is enabled
 - 0 = USB host capability is disabled
- bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-5: PORTC REGISTER MAP

ess	_	Bits											(0						
Virtual Addr (BF88_#)	Register Name ^{(1,2})	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200		31:16	_	—	—	—	_	—	—	—	—	—	—	—	—	—	_	—	0000
0200	ANOLLO	15:0	_	—			—	—	—	—	—	—	—	—	ANSC3 ⁽⁴⁾	ANSC2 ⁽³⁾	ANSC1	ANSC0	000F
6210	TRISC	31:16	—	—	—		—	—	—	—	—	—	—	—		—	_	—	0000
0210	11100	15:0	_	—			—	—	TRISC9	TRISC8 ⁽³⁾	TRISC7 ⁽³⁾	TRISC6 ⁽³⁾	TRISC5 ⁽³⁾	TRISC4 ⁽³⁾	TRISC3	TRISC2 ⁽³⁾	TRISC1	TRISC0	03FF
6220	PORTC	31:16	_	—			—	—		—	—	—	—						0000
0220	1 OKTO	15:0	_	—			—	—	RC9	RC8 ⁽³⁾	RC7 ⁽³⁾	RC6 ⁽³⁾	RC5 ⁽³⁾	RC4 ⁽³⁾	RC3	RC2 ⁽³⁾	RC1	RC0	xxxx
6230	LATC	31:16	_	—			—	—		—	—	—	—	—		—		—	0000
0200	L/ (I O	15:0	_	—			—	—	LATC9	LATC8 ⁽³⁾	LATC7 ⁽³⁾	LATC6 ⁽³⁾	LATC5 ⁽³⁾	LATC4 ⁽³⁾	LATC3	LATC2 ⁽³⁾	LATC1	LATC0	xxxx
6240	ODCC	31:16	_	—			—	—		—	—	—	—	—		—		—	0000
0240	ODCC	15:0	_	—			—	—	ODCC9	ODCC8 ⁽³⁾	ODCC7 ⁽³⁾	ODCC6 ⁽³⁾	ODCC5 ⁽³⁾	ODCC4 ⁽³⁾	ODCC3	ODCC2 ⁽³⁾	ODCC1	ODCC0	0000
6250	CNDUC	31:16	_	—			—	—		—	—	—	—	—		—		—	0000
0230	CINFUC	15:0	_	—			—	—	CNPUC9	CNPUC8 ⁽³⁾	CNPUC7 ⁽³⁾	CNPUC6 ⁽³⁾	CNPUC5 ⁽³⁾	CNPUC4 ⁽³⁾	CNPUC3	CNPUC2 ⁽³⁾	CNPUC1	CNPUC0	0000
6260		31:16	_	—		—	—	—		_	—	—	—	_	_	—	_	—	0000
0200	CINFDC	15:0	_	—		—	—	—	CNPDC9	CNPDC8 ⁽³⁾	CNPDC7 ⁽³⁾	CNPDC6 ⁽³⁾	CNPDC5 ⁽³⁾	CNPDC4 ⁽³⁾	CNPDC3	CNPDC2 ⁽³⁾	CNPDC1	CNPDC0	0000
6270	CNCONC	31:16	_	—		—	—	—		_	—	—	—	_	_	—	_	—	0000
0270	CINCOINC	15:0	ON	—	SIDL	—	—	—		_	—	—	—	_	_	—	_	—	0000
6000		31:16		_	—	—	_	—	—	—	—	—	—	—	_	—		_	0000
0200	CNENC	15:0		_	—	—	_	—	CNIEC9	CNIEC8 ⁽³⁾	CNIEC7 ⁽³⁾	CNIEC6 ⁽³⁾	CNIEC5 ⁽³⁾	CNIEC4 ⁽³⁾	CNIEC3	CNIEC2 ⁽³⁾	CNIEC1	CNIEC0	0000
6200	CNOTATO	31:16		_	—	_	_	—	_	—	—	—	_	—	_	—	_	_	0000
6290	CINSTATC	15:0		_	—	_	_	—	CNSTATC9	CNSTATC8(3)	CNSTATC7(3)	CNSTATC6(3)	CNSTATC5(3)	CNSTATC4(3)	CNSTATC3	CNSTATC2(3)	CNSTATC1	CNSTATCO	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: PORTC is not available on 28-pin devices.

3: This bit is only available on 44-pin devices.

4: This bit is only available on USB-enabled devices with 36 or 44 pins.

12.2 Timer1 Control Registers

TABLE 12-1: TIMER1 REGISTER MAP

ess				Bits															6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600		31:16	_	—	—	—	-	—	—	—	-	—	—	-	—	-	-	—	0000
0000	TICON	15:0	ON	_	SIDL	TWDIS	TWIP	—	_	—	TGATE	_	TCKP	S<1:0>	—	TSYNC	TCS	_	0000
0610		31:16	_	_	—	—	—	—	_	—	—	_	_	—	—	—	—	_	0000
0010		15:0								TMR1	<15:0>								0000
0620	DD1	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
0020	FÅI	15:0								PR1<	<15:0>								FFFF

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		¢,									Bits								6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	-	_	-	-	_	_	—	_	_	_	—	_	_	_	0000
0000	WDICON	15:0	ON	_	—	_	—	_	_	_	_		SI	VDTPS<4:	0>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0	>
22:16	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23.10	MCLKSEL ⁽²⁾	—	—	-	—	—	SPIFE	ENHBUF ⁽²⁾
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	SSEN	CKP ⁽⁴⁾	MSTEN	DISSDI	STXISE	L<1:0>	SRXIS	EL<1:0>

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FRMEN: Framed SPI Support bit

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on <u>SSx</u> pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 **MSSEN:** Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in FRAMED_SYNC mode.
 - 111 = Reserved; do not use
 - 110 = Reserved; do not use
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23 MCLKSEL: Master Clock Enable bit⁽²⁾
 - 1 = REFCLK is used by the Baud Rate Generator
 - 0 = PBCLK is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	_		
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	_	CS1 ⁽¹⁾ ADDR14 ⁽²⁾	_	—	—		ADDR<10:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	ADDR<7:0>									

REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-15 **Unimplemented:** Read as '0'
- bit 14 **CS1:** Chip Select 1 bit⁽¹⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽²⁾
- bit 13-11 Unimplemented: Read as '0'
- bit 10-0 ADDR<10:0>: Destination Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

22.1 **ADC Control Registers**

TABLE 22-1: ADC REGISTER MAP

ess										В	its								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	—	—	—	_	_	—	—	_	_	_	—	—	_	0000
9000	ADICONT	15:0	ON	_	SIDL	—	_		FORM<2:0	>		SSRC<2:0	>	CLRASAM	_	ASAM	SAMP	DONE	0000
0010	AD1CON2(1)	31:16		—		_	—	—	—	_	—	—		—	—	—	—	—	0000
9010	ADICONZ	15:0		VCFG<2:0>	>	OFFCAL	—	CSCNA	—	—	BUFS	—		SMPI	<3:0>	-	BUFM	ALTS	0000
9020		31:16	—	—	—		—	—	—	—	—	_	—	—	—	—	—	—	0000
0020		15:0	ADRC	—				SAMC<4:0>	>					ADCS	\$<7:0>				0000
9040	AD1CHS(1)	31:16	CH0NB	—	—	—		CH0SI	3<3:0>		CH0NA	—	—	—		CH0S	A<3:0>	-	0000
00.0		15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
9050	AD1CSSL ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16							ADC Re:	sult Word 0	(ADC1BUF	0<31:0>)							0000
		15:0									·	,							0000
9080	ADC1BUF1	31:16							ADC Re	sult Word 1	(ADC1BUF	1<31:0>)							0000
		15:0																	0000
9090	ADC1BUF2	31:10							ADC Re	sult Word 2	(ADC1BUF	2<31:0>)							0000
		10.0																	0000
90A0	ADC1BUF3	15.0							ADC Re:	sult Word 3	(ADC1BUF	3<31:0>)							0000
		31.16																	0000
90B0	ADC1BUF4	15.0							ADC Re	sult Word 4	(ADC1BUF	4<31:0>)							0000
		31 16																	0000
90C0	ADC1BUF5	15.0							ADC Re	sult Word 5	(ADC1BUF	5<31:0>)							0000
		31:16																	0000
90D0	ADC1BUF6	15:0							ADC Re	sult Word 6	(ADC1BUF	6<31:0>)							0000
		31:16																	0000
90E0	ADC1BUF7	15:0							ADC Re	sult Word 7	(ADC1BUF	7<31:0>)							0000
		31:16																	0000
90F0	ADC1BUF8	15:0	ADC Result Word 8 (ADC1BUF8<31:0>)																
		31:16	6 0000																
9100	ADC1BUF9	15:0							ADC Re	suit word 9	(ADC1BUF	9<31:0>)							0000
0110		31:16								with \Alard A		A -21.05 \							0000
9110	ADCIBUFA	15:0	ADC Result Word A (ADC 180FA<31:0>)																
Lege	id: x = u	nknowr	n value on F	Reset; — =	unimpleme	nted, read a	s '0'. Rese	t values are	shown in h	exadecima									

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV registers" for details. Note 1:

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)

- 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 **ASAM:** ADC Sample Auto-Start bit

1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.

- 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾

1 = The ADC sample and hold amplifier is sampling

0 = The ADC sample/hold amplifier is holding

When ASAM = 0, writing '1' to this bit starts sampling.

When SSRC = 000, writing '0' to this bit will end sampling and start conversion.

- bit 0 DONE: Analog-to-Digital Conversion Status bit⁽³⁾
 1 = Analog-to-digital conversion is done
 0 = Analog-to-digital conversion is not done or has not started Clearing this bit will not affect any operation in progress.
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

DC CHA	ARACTER	ISTICS	Standard (unless Operatin	d Opera otherwi g tempe	iting Co se state erature	nditions ed) -40°C ≤ -40°C ≤	 2.3V to 3.6V ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +105°C for V-temp
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage	_	_	0.4	V	$\text{Iol} \leq 10 \text{ mA}, \text{ Vdd} = 3.3 \text{V}$
		Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -14 mA, VDD = 3.3V
020	Мон	I/O Pins	2.0 ⁽¹⁾	—	—	V	IOH \ge -12 mA, VDD = 3.3V
0020	VOH		2.4	_	_	v	Ioh \geq -10 mA, Vdd = 3.3V
			3.0(1)	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Min. ⁽¹⁾	Typical	Max.	Units	Conditions				
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_			

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

АС СНА	RACTERIS	STICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-tem						
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions			
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	_			
		Hold Time	400 kHz mode	600	—	ns				
			1 MHz mode (Note 1)	250		ns				
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—			
		Clock	400 kHz mode	0	1000	ns				
			1 MHz mode (Note 1)	0	350	ns				
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus			
			400 kHz mode	1.3	—	μs	must be free before a new			
			1 MHz mode (Note 1)	0.5	—	μS	transmission can start			
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—			

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-20: PARALLEL SLAVE PORT TIMING

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Microchip Technology Drawing C04-187C Sheet 1 of 2