

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f032dt-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16	—	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	-	—	_	—
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
7:0	_	BMX WSDRM	_	_	_	BMXARB<2:0>		

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-21 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 20	BMXERRIXI: Enable Bus Error from IXI bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18	BMXERRDMA: Bus Error from DMA bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17	BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16	BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7	Unimplemented: Read as '0'
bit 6	BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
	 1 = Data RAM accesses from CPU have one wait state for address setup 0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3	Unimplemented: Read as '0'
bit 2-0	BMXARB<2:0>: Bus Matrix Arbitration Mode bits
	111 = Reserved (using these Configuration modes will produce undefined behavior)
	•
	•
	011 = Reserved (using these Configuration modes will produce undefined behavior)010 = Arbitration Mode 2
	001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	—	SRIPL<2:0> ⁽¹⁾		
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	—			VEC	<5:0> ⁽¹⁾		

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾
 - 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24		IPTMR<31:24>								
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	IPTMR<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	IPTMR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				IPTM	IR<7:0>					

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
00.40	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—		_	-	_	-	_	_					
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
15:8	—	—	—	—	—	—	—	—					
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_	_		TUN<5:0> ⁽¹⁾									

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess											Bit	s							
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	LI1EP9	31:16	—	—	—	—	—	—	-		_	_	—	—	—	-	—	—	0000
0000	UTER 9	15:0	_	—	—	—		—	_	—	_		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340		31:16	_	—	—	—	—	—	_	—	_	_	—		_	_	—		0000
5570	UTEL TO	15:0	-	—	_	—	_	_	-	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0		31:16		_	_	_	_	_		_			_	—			_	—	0000
5560	UILFII	15:0		—	_	_	_	_		_	-	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5300		31:16		_	_	_	_	_		_			_	—			_	—	0000
5500	UILF 12	15:0		—	_	_	_	_		_	-	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16		—	_	_	_	_		_	-	-	_	—		-		—	0000
5500	UILF 13	15:0		—	_	_	_	_		_	-	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	—	0000
53E0	UTEP14	15:0	_	_		_			_		_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_		_			_		_	_	_	_	_	_	_	—	0000
53FU	UTEP15	15:0	_						_			-		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0							
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0							
23:10	—	—	—	—	—	—	—	_	
45.0	U-0	U-0							
15:8	—	—	—	—	—	—	—	—	
	R/W-0	R/W-0							
7:0	BTSEE			BTOEE			CRC5EE ⁽¹⁾	DIDEE	
	DIGLE	DIVIALL	DIVIALL	DIOLL	DINOLL	ONCIDEL	EOFEE ⁽²⁾	FIDEE	

REGISTER 10-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit 1 = BTSEF interrupt is enabled 0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled0 = BTOEF interrupt is disabled
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit
	1 = DFN8EF interrupt is enabled
	0 = DFN8EF interrupt is disabled

- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate the USBIF register, the UERRIE (U1IE<1>) bit must be set.

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin.

Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.3.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection				
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect				
RPB3	RPB3R	RPB3R<3:0>	$\begin{array}{l} 0001 = 011x \\ 0010 = 02RTS \end{array}$				
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1				
RPB15	RPB15R	RPB15R<3:0>	0100 = Reserved 0101 = OC1				
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved				
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved				
RPC0	RPC0R	RPC0R<3:0>].				
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved				
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect				
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved				
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1				
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2				
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved				
RPA8	RPA8R	RPA8R<3:0>	0111 = C3OOT				
RPC8	RPC8R	RPC8R<3:0>]• •				
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved				
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect				
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved				
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1				
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4				
RPB2	RPB2R	RPB2R<3:0>	0110 = OC5 0111 = REFCLKO				
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved				
RPC1	RPC1R	RPC1R<3:0>	- - -				
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved				
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect				
RPB14	RPB14R	RPB14R<3:0>	0010 = U2TX				
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Res</u> erved 0100 = <u>SS2</u>				
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3				
RPB9	RPB9R	RPB9R<3:0>	0111 = C1OUT				
RPC9	RPC9 RPC9R RPC		1000 = Reserved				
RPC2	RPC2R	RPC2R<3:0>]• •				
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved				

REGISTI	ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
	1 = Frame synchronization pulse coincides with the first bit clock
bit 16	ENHBITE: Enhanced Buffer Enable bit ⁽²⁾
Sit 10	1 = Enhanced Buffer mode is enabled
	0 = Enhanced Buffer mode is disabled
bit 15	ON: SPI Peripheral On bit ⁽¹⁾
	1 = SPI Peripheral is enabled
hit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when the device enters Idle mode
	0 = Continue module operation when the device enters Idle mode
bit 12	DISSDO: Disable SDOx pin bit
	1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register $0 = SDOx pin is controlled by the module$
bit 11-10	MODE<32.16>: 32/16-Bit Communication Select bits
	When AUDEN = 1:
	MODE32 MODE16 Communication
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
	When AUDEN = 0:
	MODE32 MODE16 Communication
	1 x 32-bit
	0 0 8-bit
bit 9	SMP: SPI Data Input Sample Phase bit
	Master mode (MSTEN = 1):
	 Input data sampled at end of data output time Input data sampled at middle of data output time
	Slave mode (MSTEN = 0):
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
	To write a '1' to this bit, the MSTEN value = 1 must first be written.
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾
	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit) 0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)
bit 7	SSEN: Slave Select Enable (Slave mode) bit
bit i	$1 = \overline{SSx}$ pin used for Slave mode
	$0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾
	1 = 1 dle state for clock is a high level; active state is a low level 0 = 1 dle state for clock is a low level; active state is a high level
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in
	the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2:	This bit can only be written when the ON bit = 0.
3:	I his bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value
	of CKP.

2

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/36/44-pin Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

Key features of the UART module include:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART module.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
7000	7000 PMCON 31:1 15:0	31:16	_	_		—	_	—	—	—	—	—	—		_		—	_	0000
1000		15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	_	CS1P	_	WRSP	RDSP	0000
7010		31:16	_	_	_	—	_	—	—	_	_	—	—	—	—	_	_	—	0000
7010	PININODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	_	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	<1:0>	0000
		31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
7020	PMADDR	45.0		CS1										0.0~					
		15.0	_	ADDR14	_	_	_					/	ADDR<10:0	>					
7020		31:16									T-21.05								0000
7030	PINDOUT	15:0								DAIAOU	1<31.0>								0000
7040		31:16									~21.0>								0000
7040	FINIDIN	15:0								DATAIN	~31.0~								0000
7050		31:16	—	_	_	—	_	—	—	—	—	_	_			_	_		0000
7050	PIVIAEN	15:0	_	PTEN14	_	_	_					I	PTEN<10:0	>					0000
7060		31:16	_	—	_	—	—	—	_	_	—	—	—	—	—	_	—	_	0000
1060	PINSTAT	15:0	IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	0081

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

26.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 26-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TARI E 26-1·	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS
TADLL 20-1.	FERIFILICAL MODULE DISABLE DITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Comparator 3	CMP3MD	PMD2<2>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
12C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

2: The module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHA	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of the power pins.	
DI60b	Іісн	Input High Injection Current	0	_	+5(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins.	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and Control pins)	-20 (6)	_	+20(6)	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT)	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (VSS - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.3V to 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVDD = VDD, AVSS = VSS
D301	VICM	Input Common Mode Voltage	0	_	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)
D303A	TRESP	Large Signal Response Time	—	150	400	ns	AVDD = VDD, AVSS = VSS (Note 1,2)
D303B	TSRESP	Small Signal Response Time	-	1	_	μs	This is defined as an input step of 50 mV with 15 mV of overdrive (Note 2)
D304	ON2ov	Comparator Enabled to Output Valid	-		10	μS	Comparator module is configured before setting the comparator ON bit (Note 2)
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	—
D312	TSET	Internal Comparator Voltage DRC Reference Setting time			10	μs	(Note 3)

TABLE 30-13: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 30-32:	I2Cx BUS DATA	TIMING REQUIREMENTS	(MASTER MODE)	(CONTINUED)	
			((001111010)	

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.3V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \ for \ V-temp \end{array}$				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	—	
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μS	The amount of time the	
				400 kHz mode	1.3		μS	bus must be free
			1 MHz mode (Note 2)	0.5	—	μS	transmission can start	
IM50	Св	Bus Capacitive Loading		_	400	pF	—	
IM51	TPGD	Pulse Gobbler Delay		52	312	ns	See Note 3	

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	_	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	A:SCL Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	Tbf:sda	3F:SDA Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode (Note 1)	0.5	—	μS	transmission can start	
IS50	Св	Bus Capacitive Loading		_	400	pF	—	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-23: EJTAG TIMING CHARACTERISTICS

TABLE 30-42: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Param. Symbol Description ⁽¹⁾		Min.	Max.	Units	Conditions	
EJ1	Ттсксус	TCK Cycle Time	25	—	ns	—	
EJ2	Ттскнідн	TCK High Time	10	—	ns	—	
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—	
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	-	ns	_	
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	-	5	ns	_	
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_	
EJ8	TTRSTLOW	TRST Low Time	25	—	ns	—	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (May 2011)

This is the initial released version of this document.

Revision B (October 2011)

The following two global changes are included in this revision:

- All packaging references to VLAP have been changed to VTLA throughout the document
- All references to VCORE have been removed
- All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed
- V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables

This revision includes the addition of the following devices:

- PIC32MX130F064B
- PIC32MX130F064C
- PIC32MX130F064D
- PIC32MX150F128B
- PIC32MX150F128CPIC32MX150F128D
- PIC32MX250F128C
 PIC32MX250F128D

PIC32MX230F064B

PIC32MX230F064C

PIC32MX230F064D

PIC32MX250F128B

Text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-1.

Section	Update Description
"32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio	Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2).
and Graphics Interfaces, USB, and Advanced Analog"	Added the SPDIP package reference (see Table 1, Table 2, and " Pin Diagrams ").
	Added the new devices to the applicable pin diagrams.
	Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices.
1.0 "Device Overview"	Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1).
	Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1).
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).

TABLE A-1: MAJOR SECTION UPDATES