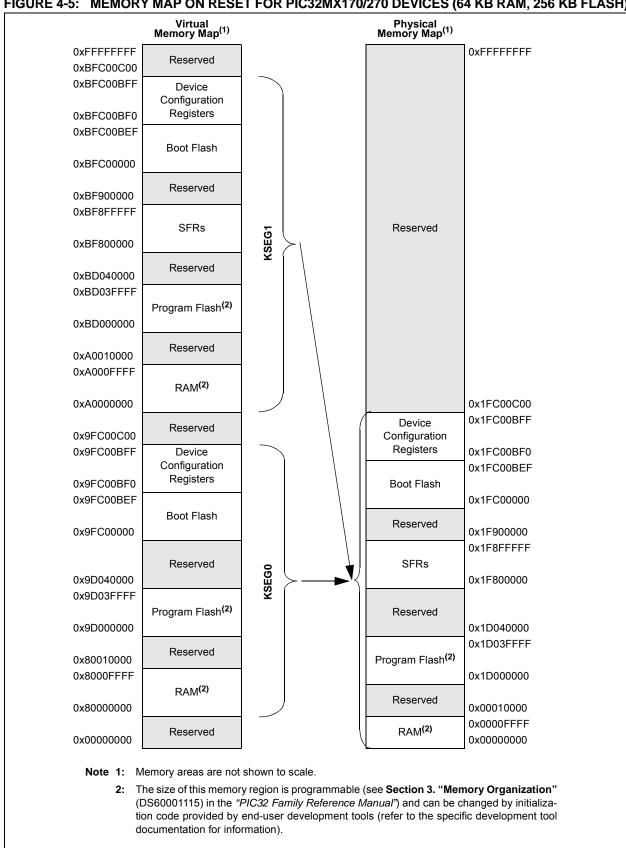


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

-XF

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064b-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP

ess										Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060	DCH0CON	31:16	_	_	_	—	_		_	—	_	_	_	—	_	_		-	0000
3000	DCHUCON	15:0 CHBUSY CHCHNS CHEN CHAED CHCHN CHAEN CHEDET CHPRI<1:0>							l<1:0>	0000									
3070		31:16	_	_	—			_	—	—		•		CHAIR	Q<7:0>				00FF
3070 DCH0ECON 15:0 CHSIRQ<7:0>					Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_		FF00		
3080	DCH0INT	31:16	—	_	—	—	—	_	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
5000	DCHOINT	15:0	_	_	—	—	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16								СНАЗА	<31:0>								0000
0000	Donooon	15:0								01100/	(101.04								0000
3040	DCH0DSA	31:16	CHDSA<31:0>																
3070	DOI 10DOA	15:0								01100/	1.02								0000
30B0	DCH0SSIZ	31:16	—	—	—	—		_	—	—	—	—	—		—	—	—	—	0000
0000	DOI100012	15:0 CHSSIZ<15:0>							0000										
3000							—	0000											
0000	DOMODOL	15:0 CHDSIZ<15:0> 0000								0000									
3000	DCH0SPTR	31:16	—	—	—	—		_	—	—	—	—	—		—	—	—	—	0000
0000	Donioor IIX	15:0	CHSPTR<15:0> 0000																
30E0	DCH0DPTR	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
OOLO		15:0								CHDPT	R<15:0>								0000
30E0	DCH0CSIZ	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
001 0	DOI100012	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	_	_	—	—			—	—	—	—	—	—	—	—	_	—	0000
0100	Donioor IIX	15:0								CHCPT	R<15:0>								0000
3110	DCH0DAT	31:16		_	—				—	—	—	—	—	—	—	—	_	—	0000
0110	DOITODAT	15:0	—	—	—				—	—				CHPDA	\T<7:0>				0000
3120	DCH1CON	31:16		_	—				—	—	—	—	—		—	—		—	0000
0120	Donnoon	15:0	CHBUSY	—	—				—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3130	DCH1ECON	31:16	—	_	—	—	—	-	—	—				CHAIR	Q<7:0>				OOFF
5150	DOITILOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	_	FF00
3140	DCH1INT	31:16	_	_	—			_	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
5140	DOLLING	15:0	_	_	_	_	—	_	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16								CHSSA	<31.0>								0000
5150	DOITIOGA	15:0								0100									0000
3160	DCH1DSA	31:16								CHDSA	1<31.0>								0000
3100	DONIDSA	15:0									~~~~								0000
Leger	od∙ v=u	nknown	value on R	leset: — =	unimplemer	nted read a	s '0' Reset	values are	shown in h	nexadecimal									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTE	R 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs 0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	 1 = A channel address error has been detected (either the source or the destination address is invalid) 0 = No interrupt is pending

DS60001168J-page 96

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

INE OIOT												
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	-	—	_	_	—	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	-	—	_	_	—	_				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	—		—	_	—	—	—				
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
7:0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾	_	USUSPEND	USBPWR				

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

zogonai						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Note 1: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1
RPB15	RPB15R	RPB15R<3:0>	
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved
RPC0	RPC0R	RPC0R<3:0>	•
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved
RPA8	RPA8R	RPA8R<3:0>	
RPC8	RPC8R	RPC8R<3:0>	•
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4
RPB2	RPB2R	RPB2R<3:0>	
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect
RPB14	RPB14R	RPB14R<3:0>	
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3
RPB9	RPB9R	RPB9R<3:0>	
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved
RPC2	RPC2R	RPC2R<3:0>	
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

21.1 RTCC Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		ē									Bits								ŝ
Virtual Address (BF80_#)	(BF80_#) (BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	_	_	—	—	—	—					CAL<	<9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	—	—		—	RTSECSEL	RTCCLKON	—		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	210 RTCALRM 3'	31:16	—			—	—	_		—	—	_	—		—	—	_	—	0000
0210	15:0 ALRI		ALRMEN	CHIME	PIV	ALRMSYNC	AMASK<3:0>				ARPT<7:0>						0000		
0220	RTCTIME	31:16	—	_	HR1	0<1:0>		HR01	<3:0>		MIN10<2:0> MIN01<3:0>				xxxx				
0220		15:0	—		SEC10<2:	0>		SEC01<3:0>		—	—	—	_	_	_	—	—	xx00	
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		—	—	—	MONTH10		MONTH	01<3:0>		xxxx
0230	RICDAIL	15:0	_	_	DAY	10<1:0>		DAY01	1<3:0>		—	—	—		_	W	/DAY01<2:0	>	xx00
0240	ALRMTIME	31:16	_		HR1	0<1:0>		HR01	<3:0>		_	М	IN10<2:0>			MIN01	<3:0>		xxxx
0240		15:0	—		SEC10<2:	0>		SEC02	1<3:0>		—	_	—		—	—	_	—	xx00
0250		31:16	_	_	_	_	_	_		_	—	_	—	MONTH10		MONTH	01<3:0>		00xx
0250	250 ALRMDATE			DAY1	0<3:0>			DAY01	<3:0>		_	_	_	-	_	W	/DAY01<2:0	>	xx0x

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	_	—	—	—	-			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	_	—	—	_	-			
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ADRC	_	—	SAMC<4:0> ⁽¹⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0			
7:0				ADCS<	7:0> (2)						

Legend:

=ogona.					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC (AD1CON3<15>) bit = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	_	—		—	_		-	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	—		—	_	_	_	—			
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
15.6	-	—	SIDL	—	_	_		—			
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
7:0					_	C3OUT	C2OUT	C10UT			

REGISTER 23-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	table bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Control bit

1 = All Comparator modules are disabled when the device enters Idle mode

0 = All Comparator modules continue to operate when the device enters Idle mode

bit 12-3 Unimplemented: Read as '0'

bit 2 C3OUT: Comparator Output bit

- 1 = Output of Comparator 3 is a '1'
- 0 = Output of Comparator 3 is a '0'

bit 1 C2OUT: Comparator Output bit

- 1 = Output of Comparator 2 is a '1'
- 0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit

- 1 = Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	—		
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	ITRIM<5:0>						IRNG	<1:0>

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 EDG1MOD: Edge1 Edge Sampling Select bit
 - 1 = Input is edge-sensitive
 - 0 = Input is level-sensitive
- bit 30 EDG1POL: Edge 1 Polarity Select bit
 - 1 = Edge1 programmed for a positive edge response
 - 0 = Edge1 programmed for a negative edge response
- bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits
 - 1111 = C3OUT pin is selected
 - 1110 = C2OUT pin is selected
 - 1101 = C1OUT pin is selected
 - 1100 = IC3 Capture Event is selected
 - 1011 = IC2 Capture Event is selected
 - 1010 = IC1 Capture Event is selected
 - 1001 = CTED8 pin is selected
 - 1000 = CTED7 pin is selected
 - 0111 = CTED6 pin is selected
 - 0110 = CTED5 pin is selected
 - 0101 = CTED4 pin is selected
 - 0100 = CTED3 pin is selected
 - 0011 = CTED1 pin is selected
 - 0010 = CTED2 pin is selected
 - 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge2 Status bit

Indicates the status of Edge2 and can be written to control edge source

- 1 = Edge2 has occurred
- 0 = Edge2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

26.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- · Configuration bit select lock

26.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the Configuration bit, PMDLOCK (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

26.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The Configuration bit, PMDL1WAY (DEVCFG3<28>), blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 18-10 **PWP<8:0>:** Program Flash Write-Protect bits⁽³⁾

DIT 18-10	PWP<8:0>: Program Flash Write-Protect bits ³⁰
	Prevents selected program Flash memory pages from being modified during code execution. 11111111 = Disabled
	111111110 = Memory below 0x0400 address is write-protected
	111111101 = Memory below 0x0400 address is write-protected
	111111100 = Memory below 0x0000 address is write-protected
	111111001 = Memory below 0x0000 address is write-protected
	111111010 = Memory below 0x1000 (44) address is write-protected
	111111001 = Memory below 0x1400 address is write-protected
	111111000 = Memory below 0x1000 address is write-protected
	111110111 = Memory below 0x2000 (8K) address is write-protected
	111110110 = Memory below 0x2400 address is write-protected
	111110101 = Memory below 0x2800 address is write-protected
	111110100 = Memory below 0x2C00 address is write-protected
	111110011 = Memory below 0x3000 address is write-protected
	111110010 = Memory below 0x3400 address is write-protected
	111110001 = Memory below 0x3800 address is write-protected
	111110000 = Memory below 0x3C00 address is write-protected
	111101111 = Memory below 0x4000 (16K) address is write-protected
	•
	•
	• 110111111 = Memory below 0x10000 (64K) address is write-protected
	•
	•
	•
	101111111 = Memory below 0x20000 (128K) address is write-protected
	•
	•
	011111111 = Memory below 0x40000 (256K) address is write-protected
	•
	•
	00000000 = All possible memory is write-protected
bit 9-5	Reserved: Write '1'
bit 4-3	ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits ⁽²⁾
	11 = PGEC1/PGED1 pair is used
	10 = PGEC2/PGED2 pair is used
	01 = PGEC3/PGED3 pair is used
	00 = PGEC4/PGED4 pair is used ⁽²⁾
bit 2	JTAGEN: JTAG Enable bit ⁽¹⁾
bit 2	1 = JTAG is enabled
	0 = JTAG is disabled
bit 1-0	DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
	1x = Debugger is disabled
	0x = Debugger is enabled
Note 1:	This bit sets the value for the JTAGEN bit in the CFGCON register.
	-
2:	The PGEC4/PGED4 pin pair is not available on all devices. Refer to the " Pin Diagrams " section for
	availability.
-	

3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	—	_	_	— — — FWDTWINSZ<1:0					
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN	WINDIS	_	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM	1<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>	
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	_	FSOSCEN	_	—	FNOSC<2:0>			

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1 :4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
······································

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40 \ ^\circ C \leq TA \leq +85 \ ^\circ C \ for \ Industrial \\ -40 \ ^\circ C \leq TA \leq +105 \ ^\circ C \ for \ V-temp \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
		Program Flash Memory ⁽³⁾					
D130	Eр	Cell Endurance	20,000	—	_	E/W	—
D131	Vpr	VDD for Read	2.3	—	3.6	V	—
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—
D134	Tretd	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	10	_	mA	—
	Tww	Word Write Cycle Time	—	411	_	es	See Note 4
D136	Trw	Row Write Cycle Time	—	6675	_	Cycles	See Note 2,4
D137	TPE	Page Erase Cycle Time	—	20011	_		See Note 4
	TCE	Chip Erase Cycle Time	—	80180	_	FRC	See Note 4

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (See Table 30-19) and FRC tuning values (See Register 8-2).

TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\label{eq:standard operating Conditions (see Note 3):2.3V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \text{ for V-temp} \\ \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CTMU CURRENT SOURCE							
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	_	0.55	_	μA	CTMUCON<9:8> = 01
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUCON<9:8> = 10
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550		μA	CTMUCON<9:8> = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	—	0.598	_	V	TA = +25°C, CTMUCON<9:8> = 01
			_	0.658	_	V	TA = +25°C, CTMUCON<9:8> = 10
			—	0.721		V	TA = +25°C, CTMUCON<9:8> = 11
CTMUFV2	VFVR	Temperature Diode Rate of	—	-1.92		mV/ºC	CTMUCON<9:8> = 01
		Change ^(1,2)	_	-1.74		mV/ºC	CTMUCON<9:8> = 10
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11

Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES:

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SOIC

28-Lead SPDIP

Example

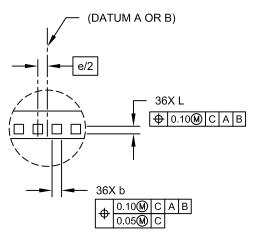
Example

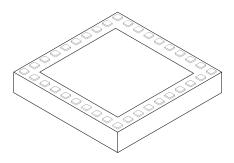
28-Lead SSOP

28-Lead QFN

Example

Example




Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

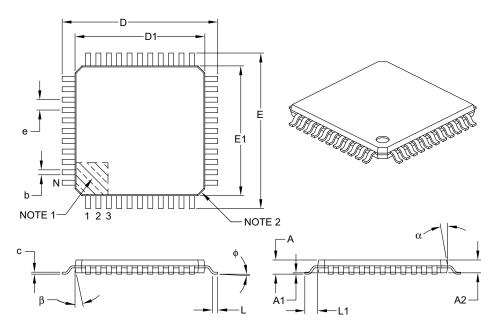
	N	IILLIMETER	S	
Dimensior	Limits	MIN	NOM	MAX
Number of Pins	Ν		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	е		0.50 BSC	_
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	Е		5.00 BSC	
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS		
Dime	nsion Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	_	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

APPENDIX A: REVISION HISTORY

Revision A (May 2011)

This is the initial released version of this document.

Revision B (October 2011)

The following two global changes are included in this revision:

- All packaging references to VLAP have been changed to VTLA throughout the document
- All references to VCORE have been removed
- All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed
- V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables

This revision includes the addition of the following devices:

- PIC32MX130F064B
- PIC32MX130F064C
- PIC32MX130F064D
- PIC32MX150F128B
- PIC32MX150F128CPIC32MX150F128D
- PIC32MX250F128C
 PIC32MX250F128D

PIC32MX230F064B

PIC32MX230F064C

PIC32MX230F064D

PIC32MX250F128B

Text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-1.

Section	Update Description
"32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio	Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2).
and Graphics Interfaces, USB, and Advanced Analog"	Added the SPDIP package reference (see Table 1, Table 2, and " Pin Diagrams ").
	Added the new devices to the applicable pin diagrams.
	Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices.
1.0 "Device Overview"	Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1).
	Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1).
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).

TABLE A-1: MAJOR SECTION UPDATES